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ABSTRACT. Breeding programs currently use statistical analysis 
to assist in the identification of superior genotypes at various stages 
of a cultivar’s development. Differently from these analyses, the 
computational intelligence approach has been little explored in genetic 
improvement of cotton. Thus, this study was carried out with the 
objective of presenting the use of artificial neural networks as auxiliary 
tools in the improvement of the cotton to improve fiber quality. To 
demonstrate the applicability of this approach, this research was carried 
out using the evaluation data of 40 genotypes. In order to classify the 
genotypes for fiber quality, the artificial neural networks were trained 
with replicate data of 20 genotypes of cotton evaluated in the harvests 
of 2013/14 and 2014/15, regarding fiber length, uniformity of length, 
fiber strength, micronaire index, elongation, short fiber index, maturity 
index, reflectance degree, and fiber quality index. This quality index 
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was estimated by means of a weighted average on the determined score 
(1 to 5) of each characteristic of the HVI evaluated, according to its 
industry standards. The artificial neural networks presented a high 
capacity of correct classification of the 20 selected genotypes based 
on the fiber quality index, so that when using fiber length associated 
with the short fiber index, fiber maturation, and micronaire index, the 
artificial neural networks presented better results than using only fiber 
length and previous associations. It was also observed that to submit 
data of means of new genotypes to the neural networks trained with data 
of repetition, provides better results of classification of the genotypes. 
When observing the results obtained in the present study, it was verified 
that the artificial neural networks present great potential to be used in 
the different stages of a genetic improvement program of the cotton, 
aiming at the improvement of the fiber quality of the future cultivars.
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INTRODUCTION

Gossypium hirsutum is the most cultivated cotton species in the world. Cotton hasbeen 
domesticated for thousands of years in South Arabia and as a consequence of this incessant 
domestication process, cotton is the most important vegetable fiber in the worldwide textile 
industry (Cotton Incorporated, 2017).

However, the high quality fiber is essential for textile industry and will influence directly 
cotton commercialization, because quality determines the market value and also acceptance 
(Bonifácio et al., 2015). Thus, the cotton genetic breeding programs aim specially fiber quality, 
as well as, the cotton lint development (Morello and Freire, 2005; De Araújo et al., 2013).

Cotton fiber quality has been mainly determined by genetic traits, but, the environment 
(climatic, agronomic, nutritional, and phytosanitary traits, as well as the crop management), 
has strong influence in quality. Harvest and processing also play an essential role in 
maintaining fiber quality. Furthermore, the impurity content from harvest mechanization has 
to be highlighted (Salgado et al., 2015).

The HVI (high instrument volume) analyzes fiber quality and is widely used in cotton 
breeding programs, albeit, certain questions arise about this practice, such as the impact on 
genotype selection using more than one intrinsic fiber criterion and the reduction of genetic 
diversity for some of traits analyzed. Moreover, the visual criterion used and variation of scores 
attributed for different appraisers are questionable for morphologic evaluation effectiveness. 
Studies disclosing the morphologic traits evaluation through visual scores have low efficiency 
(Gabriel and Blanco, 2009).

In this context, the mathematical modeling appears as a tool to help cotton genetic 
breeding and so genotypes classification. ANNs are an alternative, which is based on a 
computation concept that aims to work with data processing in similar way to human brain, 
acquiring knowledge through experience, predicting and recognizing patterns or establishing 
groups (Haykin, 2008; Braga et al., 2011). Genetic breeding applies ANNs in genetic diversity 
studies (Barbosa et al., 2011), genetic value prediction (Silva et al., 2014; Carneiro, 2015), as 
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well as adaptability and stability analysis (Barroso et al., 2013; Nascimento et al., 2013). Cotton 
prediction studies have used some traits related to textile industry wiring (Jackowska-Strumillo 
et al., 2004; Ghosh et al., 2005; Ureyen and Kadoglu, 2007; Gharehaghaji et al., 2007).

RNA main attribute is the nonlinear structure linked to a capacity of not requiring 
detailed information about physical processes of system (Sudheer et al., 2003). ANNs 
classification method presents advantages asbeing nonparametric and tolerant to data loss 
(Kavzoglu and Mather, 2003). Therefore, thisstudyevaluates the RNA potential in cotton 
genotype selection with high-quality cotton fiber.

MATERIAL AND METHODS

This study used data from 40 cotton genotypes evaluated during 2013/14 and 
2014/15 seasons, from Programa de MelhoramentoGenético do Algodoeiro (PROMALG) of 
Universidade Federal de Uberlândia (UFU), and 8 intrinsic fiber traits measured through HVI 
(high instrument volume), besides quality fiber analysis. Data were a result of experiment 
carried out at Fazenda Capim Branco, a research station of UFU, between the geographical 
coordinates 18°52’S,48°20’W, and 805m in altitude, in Uberlândia, Minas Gerais.

The 2013/14 season experiment design consisted of augmented blocks with 4 
replications, 5-m long plots of four rows of cotton plant with row spacing of 0.9 m among 
each other. The 2014/15 season experiment was made at the same way as the previous one, 
except for the number of plot lines, with one extra line. Thus, there were 8 holes per meter and 
two seeds per hole, with subsequent thinning, leaving one plant per hole.

The fiber traits evaluated were: length, length uniformity, resistance, elongation, 
micronaire, and short fiber index (SFI) (Table 1), as well as reflectance degree and fiber quality.

Table 1. Reference values for fiber intrinsic traits.

FL = fiber length (mm); LUI = length uniformity index (%); FS = fiber strengh (gf/tex); MIC = micronaire Index; 
ELO = fiber elongation (%); SFI = short fiber index (%); MAT = fiber maturation index (%).

FL LUI FS MIC ELO SFI MAT 
>31.8 >85.0 >34.0 >5.9 >7.6 >17.0 >88.0 
31.8-30.0 85.0-83.0 34.0-31.0 5.9-4.9 7.6-6.8 17.0-14.0 88.0-80.0 
29.9-27.3 82.9-80.0 30.9-27.0 4.8-3.5 6.7-5.9 13.9-10.0 79.9-74.0 
27.2-23.5 79.9-77.0 26.9-23.0 3.4-3.0 5.8-5.0 9.9-6.0 73.9-65.0 
<23.5 <77.0 <23.0 <3.0 <5.0 <6.0 <65.0 

Reflectance degree is based on the ash content in cotton sample. The whiter cotton 
sample is the higher will be the reflectance degree (Costa et al., 2006).The fiber quality has 
five quality scores per trait. The scale attributes scores from 1 to 5, in accordance with less 
desirable (score 1) and most desirable (score 5).

The multiple regression analysis identifies cotton fiber major determinant traits 
of quality through stepwise to select variables for pattern adjustment, which includes 12 
genotypes measured traits in two evaluations, seasons of 2013/14 and 2014/15. The stepwise 
multiple regression analysis was carried out with the GENES software (Cruz, 2016).

The data of relevant variables were submitted to analysis of variance, according to 
model of augmented block design. Later, the season joint analysis of variance was also carried 
out. For all analyses, all effects were considered fixed, except the error. RNA analyses used 
genotype data in each replication to obtain a larger sample size. The genotypes were allocated 
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to two established groups of fiber quality. The first group consisted of genotypes with scores 
up to 2.5 and the second group with genotypes with scores higher than 2.5. The genotypes 
placed in different groups at replications and/or seasons were not analyzed.

Thereby, 20 of the 40 genotypes evaluated in seasons of 2013/14 and 2014/15 were 
used in RNA analyses (Table 2), making total of 60 observations per evaluation year, since the 
data of each replication were used for RNA training and validation.

Table 2. Genotypes selected for RNA analyses and its respective groups of classification.

Genotype Group Genotype Group 
PA UFU - S 1 PA UFU - T 2 
PA UFU - M 1 PA UFU - N 2 
PA UFU - C 1 PA UFU - E 2 
FM 966 1 PA UFU - R 2 
PA UFU - Z 1 DP 555 2 
PA UFU - D 1 PA UFU - F 2 
PA UFU - H 1 PA UFU - OB 2 
PA UFU - L 1 PA UFU - A 2 
PA UFU - P 1 PA UFU - 18 2 
PA UFU - G 1 PA UFU - 7 2 

The RNA analysis was used to predict the fiber quality genotypes in 2014/15 season 
as fiber length, isolated or joint with short fiber index, fiber maturation, and micronaire index 
based on RNA of 2013/14 season. Data of 2013/14 experiment replications from amplification 
process of RNA training acquired information from 300 genotypes per group with the same 
properties (average vector and variance-covariance matrix) of original genotypes. The 
validation was carried out replications data (60 observations) used in the amplification process 
and prediction with isolated data of replications (60 observations) and replications average (20 
observations) of the 2014/15 season, as follows: 1 - 2013/14 season - Training and validation; 
2014/15 season - Prediction (60 observations - replications data); 2 - 2013/14 season - Training 
and validation; 2014/15 season - Prediction (19 observations - data of average replications).

In this context, global apparent error rates (TEA) were evaluated for training, 
validation and prediction of ANNs. TEA was givenby percentage of incorrect classification, 
according to allocation groups of the genotypes. TEA per group for validation and predictions 
was also appraised.

The proposed experiment data simulation resulted in 300 new information per group 
according to data amplification. The new data sets had same properties (average, variance and 
covariance) of the original data sets. The amplification process was carried out by the GENES 
software (Cruz, 2016).

Data of 2013/14 and 2014/15 seasons experiments were evaluated through ANNs 
analyses and carried out with software MATLAB (Beale et al., 2015). RNA training used 600 
simulated amplified data (300 of each group) according to multilayer perceptron architecture 
with following descriptions for the topologies:a)number of hidden layers(3 hidden layers were 
considered);b)number of neurons(combinations of 3 to 12 neurons were considered for each 
hidden layer);c)activation function. The linear activation function was used in output layers. 
The adequacy to all possible combinations: linear, logistic regression analysis and hyperbolic 
tangent were evaluated in the hidden layers. d) Training number of cycles: it was added 5000 
momentum. The number of interactions was limited, and with attention, did not become 
excessive, which could lead to loss of generalization power. e) training function: trainbr - 
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Backpropagation is a network training function that updates weight and bias values according 
to Levenberg-Marquardt optimization. This minimizes squares of the errors and weight 
combination; therefore, it determines the correct combination order to produce a network with 
good generalization capability, whose process is called Bayesian regularization.

RESULTS

The fiber length (FL), SFI, fiber maturation (MAT) and micronaire index (MIC) were the 
determinant traits of cotton fiber quality (FQ) based on the spetwise multiple regression analysis. 
RNA analyses used FL isolated or with SFI, MAT, and MIC predict the FQ of cotton genotypes.

The single analyses of variance report about FQ, FL, SFI, MAT, and MIC of 20 
cotton genotypes in 2013/14 and 2014/15 seasons are described in Table 3. The coefficients of 
experimental variation (CVe’s) in 2013/14 and 2014/15 experiments were below 10% for the 
traits evaluated, indicating good experimental accuracy. CVe’s values given are in accordance 
with those reported in similar cotton growing experiments (Bonifácio et al., 2015).

Table 3. Analysisof variance report of experiments carried out with 20 cotton genotypes.

**Significant at 1% by the F test (P < 0.01); CVe = coefficientof experimental variation; h2 = genotypic determination 
coefficient; χ = average; SV = source of variation; d.f. = degrees of freedom; FQ = fiber quality index; FL = fiber 
length; SFI = short fiber index; MAT = fiber maturation index; MIC = micronaire index.

SV d.f. Meansquares 
2013/14season 2014/15 season 

FQ MIC MAT FL SFI FQ MIC MAT FL SFI 
G 19 9.33* 0.16* 0.00* 22.94* 33.55* 10.27* 0.22* 0.00* 24.35* 33.04* 
Cve 

 
8.64 6.47 3.76 2.51 8.32 9.78 7.93 4.52 3.40 7.64 

h2 
 

57.88 60.46 89.65 97.89 97.35 59.63 61.42 89.92 98.33 96.77 
χ 

 
2.83 3.86 0.83 26.74 10.97 3.22 4.06 0.85 28.48 9.24 

 

Significance (P < 0.01) was observed as genotype effects in the two experiments (Table 
3), indicating the existence of genetic variability among genotypes for the5 traits evaluated in 
both seasons. The genotypic determination coefficients (h2) of FL, SFI, and MAT were of high 
magnitude for both experiments.

Joint analyses report of FQ, FL, SFI, MAT, and MIC evaluated in 2013/14 and 
2014/15 seasons were described in Table 4. Significant effects (P < 0.01) of genotypes were 
observed on FQ, FL, SFI, MAT, and MIC. The environmental source of variation in seasons 
had significant effect (P < 0.01) for FL, SFI, MAT, and MIC. It had significant effect (P < 0.05) 
of genotype x environment interaction for traits FQ, FL, and SFI.

Table 4. Joint analysis of variance report of evaluated traits in 20 cotton genotypes of 2013/14 and 2014/15 seasons.

*,**Significant at 5 and 1% by the F test; CVe = coefficient of experimental variation; h2 = genotypic determination 
coefficient; χ = average; SV = source of variation; d.f. = degrees of freedom; FQ = fiber quality index; FL = fiber 
length; SFI = short fiber index; MAT = fiber maturation index; MIC = micronaire index.

SV d.f. Meansquares 
FQ MIC MAT FL SFI 

Genotypes 19 19.25** 0.37** 0.01** 45.87** 67.02** 
Environments 1 0.48ns 2.46** 0.12** 142.57** 234.83** 
GxE 19 2.39* 0.14ns 0.23ns 23.33* 45.17* 
CVe (%)  9.21 7.28 4.14 2.87 7.68 
h2 (%)  64.81 69.33 92.25 99.27 98.66 
Average  3.03 3.96 0.84 27.61 10.11 
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Table 5 presents results of ANNs, which used FL isolated or with SFI, MAT, and MIC. 
Higher TEA was observed for training, validation and prediction based on FL. Lower TEA 
was also observed in prediction of average data (16.78 and 9.27%) than in the replication data 
(26.89 and 14.55%) for both ANNs using FL isolated or with other traits.

Table 5. Apparent error rates calculated in analyses with neural networks.

Procedures Apparenterror rate - TEA (%) 
Training Validation Prediction 1 Prediction 2 

RNA (FL) 10.58 16.81 26.89 16.78 
RNA (FL+SFI) 8.47 13.33 14.55 9.27 
RNA (FL+SFI+MAT) 5.43 10.29 10.22 4.86 
RNA (FL+SFI+MAT+MIC) 2.11 6.55 8.74 1.92 

FL = fiber length; SFI = short fiber index; MAT = fiber maturation; MIC = micronaireindex.

Accordingto groupsof genotype classification (Table 6), RNA validation through FL, 
SFI, MAT, and MIC had higher percentage of correctness (91.33%) in genotypeallocation of 
Group 1 than onlywith FL (73.78%). Similar result was observed for genotype classification 
of Group 2, with 88.96% of rightness, considering FL, SFI, MAT, and MIC, against 74.55% 
based only on FL. When submitting the replicate data of 2014/15 season evaluated genotypes 
to prediction, it was noted that the ANNs using FL individually or in conjunction with the other 
traits correctly allocated all the genotypes of group 1, while RNA based on FL, SFI, MAT, and 
MIC of group 2 was higher, with 89.43% accuracy versus 73.28% considering only FL.

Table 6. Percentage of correct classification report using artificial neural networks.

Groups Classification (%) 
Validation Prediction 1 Prediction 2 

1 73.78ª 100.00a 100.00a

1 81.48b 100.00b 100.00b

1 87.12c 100.00c 100.00c

1 91.33d 100.00d 100.00d

2 74.55ª 73.28ª 81.37ª 
2 79.98b 77.42b 84.24b

2 84.61c 82.67c 88.50c

2 88.96d 89.43d 92.45d

aRNA (FL); bRNA (FL+SFI); cRNA (FL+SFI+MAT); dRNA (FL+SFI+MAT+MIC).

Evaluated genotypes replications data used in 2014/15 season and applied to the 
prediction resulted in ANNs that used FL isolated or with other traits. Also, they were correctly 
allocated in all genotypes of Group 1, while in Group 2,the RNA based on FL, SFI, MAT, and 
MIC was higher with 92.45% accuracy versus 81.37% considering only FL. When replications 
or averages of genotypes evaluated in the 2014/15 season were used to the prediction, and 
also compared to them, it resulted in ANNs based on FL alone and allocated correctly in all 
genotypes of Group 1. However, the prediction based on the average data was higher with 
81.37% of accuracy versus 73.28% using replication data. Considering FL on set with SFI, 
MAT, and MIC, when submitting the data of repetitions or averages to the prediction, ANNs 
had also placed correctly the genotypes of Group 1. However, the prediction based on the 
average data was higher with 92.45% of accuracy versus 89.43% using replications data.

Table 7 described RNA topologies with lower TEA in validation using fiber length 
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isolated or with SFI, MAT, and MIC, according to multilayer perceptron architecture, regarding 
the number of neurons and activation function in the hidden layers.

Table 7. RNA topology, regarding the number of neurons and activation function in the hidden layers (O1, O2 
and O3), based on relation of traits evaluated in 20 cotton genotypes.

FL = fiber length; SFI = short fiber index; MAT = fiber maturation; MIC = micronaire index.

FL FL + SFI 
Neurons Activationfunction Neurons Activationfunction 

O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3 
3 3 3 Tansig Logsig Tansig 3 3 3 Logsig Purelin Purelin 

FL+ SFI + MAT FL + SFI + MAT + MIC 
Neurons Activationfunction Neurons Activationfunction 

O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3 
3 3 3 Purelin Purelin Purelin 3 3 3 Purelin Purelin Purelin 

The highest number of neurons per layer was observed for RNA based on just FL 
compared to ANNs based on FL, SFI, MAT, and MIC. RNA topologies based on FL had 
the activation function in hidden layers more complex than ANNs based on FL and other 
fiber traits, because they have predominance of functions like logsig and tansig, whereas in 
associations with FL predominated linear activation functions such as purelin.

DISCUSSION

Higher accuracy in cotton fiber genotype selection of high quality requires information 
from other technological fiber traits according to phenotypic expression. This study observed 
determinant traits of fiber quality as FL, SFI, MAT and MIC.

Because cotton FQ is governed by many genes and has a strong environmental 
influence, the expression of genes at different stages of cotton fiber development indicates a 
large number of alleles involved in fiber development and in its quality determination. In this 
case, indirect selection for FQ based on auxiliary traits is a real possibility for cotton breeders. 
The FQ was already related to length and maturity of fiber (Zabot, 2007). Traits associated 
with phenotypic expression of cotton FQ in discriminatory analyses will be effective, if based 
on highly accurate process of trait selection. Additionally to quality, achieving high levels of 
productivity is important and closely linked to high technology (Rosolem, 2001).

ANNs based on FL, SFI, MAT, and MIC were higher than ANNs based on FL alone; 
FL and SFI; FL, SFI and MAT, since they had lower TEA for the stages of training, validation 
and prediction. Moreover, ANNs based on FL, SFI, MAT, and MIC had TEA slower than 9% 
in all stages, which in this study represented the erroneous classification of only two of the 20 
evaluated genotypes and highlighted the high potential of RNA generalization (Braga et al., 
2011; Carneiro, 2015).

The prediction had used genotype average data, as well as ANNs based on FL, SFI, 
MAT and MIC. Therefore, ANNs based on just FL and other traits were also higher since 
TEAs were much lower.

Cotton breeding for FQ would select plants with scores higher than 2.5, which would 
correspond to genotypes allocated to Group 1. Thus, according to predictions, ANNs based on 
FL, SFI, MAT, and MIC were higher than analyses based only on FL and other associations, 
since they presented the same percentage of correct classification in Group 1 and higher 
correctly percentage classification of the genotypes in Group 2.
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The highest accuracy using average data of FL, SFI, MAT, and MIC for the prediction 
is due to the fact of environmental effects tend to be canceled with the use of averages. The 
genotypes evaluation through scores verified that 20 of 40 genotypes had contradiction 
regarding FQ scores within the same experiments and/or in different experiments. Considering 
these contradictions as evaluation errors, 50% error rate was associated with evaluation in the 
experiment. This error rate was much higher than the prediction error rate of ANNs based on 
FL, SFI, MAT, and MIC, which evidences the potential of RNA uses in improvement of cotton 
for FQ. ANNs have been shownefficient in the solution of prediction problems, recognition of 
patterns and groupings (Haykin, 2008), which also are difficulties found in the different stages 
of a breeding program.

CONCLUSIONS

ANNs proved to be effective in solving problems of prediction, pattern recognition 
and grouping of cotton genotypes. Using data from averages in the prediction by ANNs 
generated reliable results to FQ selection of cotton genotypes. Fewer explanatory variables for 
training and validation require ANNs with more complex architectures.
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