TNFR1 -383 A>C polymorphism and ankylosing spondylitis in a Russian Caucasian population: a preliminary study

V. Mordovskii*, A. Semenchukov*, S.Y. Nikulina¹, A.B. Salmina³, A. Chernova¹, E. Kapustina¹, A. Kents¹, A. Ohapkina¹, E. Moskaleva¹, P.E. Maltese⁴, P. Convertini⁴ and M. Bertelli⁵

¹Department of Internal Diseases N.1, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
²Russia-Italy Laboratory of Medical Genetics MAGI-Russia, Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
³Department of Biochemistry, Research Institute of Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
⁴MAGI Non-Profit Human Medical Genetics Institute, Rovereto, Italy
⁵MAGI Non-Profit Human Medical Genetics Institute, Bolzano, Italy

*These authors contributed equally to this study.
Corresponding author: P. Convertini
E-mail: paolo.convertini@assomagi.org

Genet. Mol. Res. 16 (1): gmr16019581
Received December 13, 2016
Accepted February 20, 2017
Published March 30, 2017
DOI http://dx.doi.org/10.4238/gmr16019581

Copyright © 2017 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License.

ABSTRACT. The aim of this study was to assess the association between the TNFRI rs2234649 polymorphism and ankylosing spondylitis susceptibility in a Russian Caucasian population. A total of 41 ankylosing spondylitis patients and 43 healthy controls, matched
according to age and sex, were enrolled, and polymerase chain reaction-restriction fragment length polymorphism analysis was used to genotype the rs2234649 variant. We evaluated genotype distributions in the patient and control groups with the chi-square test, and assessed the relationship between genotypes and ankylosing spondylitis using the odds ratio. Our analysis showed that the rs2234649 polymorphism does not increase ankylosing spondylitis risk. In conclusion, the TNFR1 gene polymorphism tested does not appear to be useful for assessing predisposition to this disease or for its diagnosis or prognosis.

Key words: Ankylosing spondylitis; Tumor necrosis factor receptor 1; Inflammation; Genetic polymorphism; Rheumatic disease; Case-control studies

INTRODUCTION

Ankylosing spondylitis (AS) is a common inflammatory rheumatic disease affecting the axial skeleton, leading to inflammatory back pain and structural and functional impairments that decrease quality of life (Braun and Sieper, 2007). Over 80% of AS patients are young people (from 20 to 35 years old), and the associated disability rate reaches 40-60% by 5 years after the onset of symptoms. Disability related to this disease is caused by structural changes involving syndesmophyte formation and ankylosis of the vertebrae (Feldtkeller et al., 2003; Wang et al., 2012). According to the Assessment of SpondyloArthritis international Society (ASAS) criteria, 2009, AS is characterized by insidious onset at <40 years of age and pain and stiffness after periods of inactivity that improve with exercise and worsen with rest (Sieper et al., 2009). Physicians do not yet completely understand the exact pathogenesis and etiology of AS, but it is accepted that genetic and environmental factors are implicated (Daryabor et al., 2014). To date, there exist no methods for its early diagnosis. After the appearance of symptoms, diagnosis takes 8 years on average, causing the worsening of the disease (van der Linden and van der Heijde, 1998). AS is more frequent in Caucasian populations (Braun and Sieper, 2007; Brown, 2008; Daryabor et al., 2014) and has a heritable component, as demonstrated by studies of patients’ families and twins, who demonstrate a much higher risk of developing AS (Brown, 2008; Dong et al., 2013; Daryabor et al., 2014). More than 80% of AS patients carry the human leukocyte antigen-B (HLA-B)27 allele, but only 1-5% of HLA-B27 carriers develop AS, suggesting that additional variants are likely to influence susceptibility (Brown et al., 2000). Besides HLA-B27, 12 loci have been associated with AS in Europeans (ANTXR2, CARD9, ERAP1, IL12B, IL23R, KIF21B, PTGER4, RUNX3, TBKBP1, TNFR1, and chromosomes 2p15 and 21q22) (Burton et al., 2007; Reveille et al., 2010; Evans et al., 2011).

Tumor necrosis factor (TNF) is a proinflammatory cytokine that plays a key role in chronic inflammation (Wajant et al., 2003). Given its involvement in the pathology of many autoimmune diseases, such as rheumatoid arthritis, Crohn’s disease, and psoriasis, researchers have developed anti-TNF therapies to treat these conditions (Kontermann et al., 2009). TNF exerts specific and often opposing effects via two distinct receptors, TNF receptor superfamily member 1a (TNFR1) and TNF receptor 2 (TNFR2). TNFR1 has proinflammatory effects (Akassoglou et al., 1998; McCoy and Tansey, 2008), whereas TNFR2 (Grell et al., 1995)
promotes both neuroprotection and remyelination (Arnett et al., 2001; Fontaine et al., 2002). Accordingly, full inhibition of TNF leads to side effects such as increased inflammation; thus, there is a clear need to avoid the risks associated with total TNF inactivation. One solution is the development TNFR1-specific antagonists that leave TNFR2 signaling unaffected.

The cytogenetic location of TNFR1 is 12p13.31. Mutations in this gene have been associated with multiple sclerosis. Ferrante (1989) previously identified several single nucleotide polymorphisms in TNFR1. Of the various TNFR1 sequence variants, the 5’ untranslated region (UTR) rs2234649 polymorphism, resulting in an adenine to cytosine transversion at position -383 relative to the translation start site, has been associated with AS in the Mexican population (Corona-Sanchez et al., 2012) and type 1 diabetes (Nishimura et al., 2003). Indeed, Nishimura et al. (2003) showed a significantly increased frequency of the -383C allele among patients with type 1, likely causing higher expression of the TNFR1 gene, and resulting in the increased inflammation-observed in these patients. Recently, Fletes-Rayas et al. (2016) established an association between the -383C allele and primary Sjögren’s syndrome, an autoimmune disease.

Therefore, our aim was to study the association between the rs2234649 TNFR1 polymorphism and AS in a Russian Caucasian population.

MATERIAL AND METHODS

Patients and healthy subjects

This study was performed in a regional clinical hospital in Krasnoyarsk, Russia, from June, 2014 to August, 2016, and included 41 AS patients and 43 control subjects. To be included, patients had to: i) be diagnosed with AS based on the modified New York criteria (Sieper et al., 2009); ii) have been born in the Krasnoyarsk region and be long-term residents; iii) be more than 18 years old; iv) be Caucasian; v) be able to perform the necessary procedures; and vi) sign an informed consent form for this research. In addition, we excluded patients with an overlapping syndrome or inflammatory bowel disease.

We selected a healthy control group from the general population of the Krasnoyarsk region, in which they had been born and of which they were residents. Control subjects of unknown ancestry or suspected of having a chronic disease were excluded from our study. Each control group member was chosen from a different family, and there were no blood relationships between controls and cases.

For clinical assessment, we used a protocol based on the ASAS handbook guidelines for evaluation of spondyloarthritis. The protocol took into account clinical and demographic characteristics. Disease activity was assessed by the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), and functioning by the Bath Ankylosing Spondylitis Functional Index and Health Assessment Questionnaire for the Spondyloarthropathies (Sieper et al., 2009).

Ethical considerations

Our protocol conformed to ethical standards and was approved by the Local Ethical Committee of Krasnoyarsk State Medical University named after Prof. V. F. Voyno-Yasenetsky (protocol No. 16 of 23.06.2014).
Polymerase chain reaction (PCR)-restriction fragment length polymorphism screening of the TNFR1 -383 A˃C polymorphism

On the day of the clinical evaluation, blood samples were collected in tubes containing ethylenediaminetetraacetic acid. DNA was extracted from 0.5 mL whole blood using an E.N.Z.A. Blood DNA kit (Omega Bio-tek; Norcross, GA, USA) following the manufacturer protocol. Genotyping of the rs2234649 polymorphism was performed using the primers 5'-TTATTGCCCCCTTGGTGTTTGGTTG-3' (forward) and 5'-GGAGGGGAAGAGTGAGGCAGTGTT-3' (reverse), in order to obtain a PCR product incorporating a BglII enzyme restriction site. Each 25-µL PCR contained 30-50 ng DNA, 10 µM each primer, 2.5 µL 10X PCR buffer, 0.5 mM each deoxynucleotide, 1.5 mM MgCl₂, and 0.75 U Taq polymerase (Fermentas, Vilnius, Lithuania). The reactions were conducted in a thermocycler (Life ECO, model TC-96/G/H(b)C BIOER, Binjiang, China). After amplification, 3 µL PCR product was analyzed by GelRed staining after electrophoresis on a 2% agarose gel (Biotium, Hayward, CA, USA) and observation under ultraviolet light. PCR fragment sizes were evaluated by comparison to a 100-bp DNA ladder (Fermentas). The following cycling profile was used for PCR: 95°C for 5 min (initial denaturation), then 40 cycles of 95°C for 15 s (denaturation), 58°C for 30 s (annealing), and 72°C for 40 s (extension), followed by a final extension at 72°C for 5 min.

Statistical analysis

We used the chi-square test to evaluate the differences between patients and controls in the distribution of rs2234649 alleles and genotypes, and the odds ratio (OR) to measure the association between AS and the observed genotype frequencies, as a measure of AS risk. Statistical significance was considered to be represented by P values < 0.05 for the chi-square test and OR (MedCalc Software, Mariakerke, Belgium).

Deviation from Hardy-Weinberg equilibrium (HWE) was tested in the control group using the online tool “Hardy-Weinberg 2-Allele Calculator” (http://www.had2know.com/academics/hardy-weinberg-equilibrium-calculator-2-alleles.html).

We used Fisher’s exact test to calculate the difference between patients and controls in the distribution of rs2234649 alleles and genotypes; P values < 0.05 were considered statistically significant (MedCalc Software).

Deviation from Hardy-Weinberg equilibrium (HWE) was tested in the control group using the on-line tool “Hardy-Weinberg 2-Allele Calculator” (http://www.had2know.com/academics/hardy-weinberg-equilibrium-calculator-2-alleles.html).

We used Fisher’s exact test to calculate the difference between patients and controls in the distribution of rs2234649 alleles and genotypes; P values < 0.05 were considered statistically significant (MedCalc Software, Mariakerke, Belgium).

RESULTS

Demographic and clinical characteristics

In this study, we compared 41 patients with AS and 43 controls in terms of allele and genotype frequencies of the rs2234649 TNFR1 5'-UTR polymorphism. Table 1 shows the
general characteristics of the AS patients, all of whom were men. The mean age in this group was 41.5 years. Mean disease duration was 12.4 years, and mean age at onset was 29.7 years. The average BASDAI score was greater than 4.0.

Table 1. Clinical characteristics of the ankylosing spondylitis patients (N = 41) recruited in this study.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>41.5 ± 6.9</td>
</tr>
<tr>
<td>Disease duration (years)</td>
<td>12.4 ± 6.7</td>
</tr>
<tr>
<td>Age at onset (years)</td>
<td>29.7 ± 5.4</td>
</tr>
<tr>
<td>BASDAI score</td>
<td>4.87 ± 0.8</td>
</tr>
<tr>
<td>HAQ-S score</td>
<td>4.99 ± 0.75</td>
</tr>
<tr>
<td>BASFI score</td>
<td>1.2 ± 0.6</td>
</tr>
<tr>
<td>Morning stiffness (VAS)</td>
<td>52.24 ± 19.71</td>
</tr>
<tr>
<td>Schober (cm)</td>
<td>3.6 ± 0.46</td>
</tr>
<tr>
<td>Occiput to wall (cm)</td>
<td>7.68 ± 9.59</td>
</tr>
</tbody>
</table>

Quantitative variables are reported as means ± standard deviations. The visual analogue scale (VAS) was evaluated from 0 to 100 mm. BASDAI = Bath Ankylosing Spondylitis Disease Activity Index; BASFI = Bath Ankylosing Spondylitis Functional Index; HAQ-S = Health Assessment Questionnaire for the Spondyloarthropathies.

Analysis of the TNFR1 -383 A>C polymorphism

The results of restriction enzyme digestion for analysis of the rs2234649 polymorphism showed that the homozygous A/A genotype yielded a 199-bp fragment, the heterozygous A/C genotype resulted in three products of 199, 135, and 64 bp, and the homozygous C/C genotype generated two fragments of 135 and 64 bp. Table 2 shows the TNFR1 rs2234649 allele and genotype frequencies recorded in each group.

The control group was found to be in HWE with respect to this polymorphism (P = 0.8759). Genotype and allele frequencies of this TNFR1 variant did not differ between patients and controls (P = 1.0).

Table 2. Distribution of TNFR1 rs2234649 alleles and genotypes in Russian Caucasian patients with ankylosing spondylitis and control subjects.

<table>
<thead>
<tr>
<th>Allele or genotype</th>
<th>Patients (N = 41)</th>
<th>Controls (N = 43)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>40 (97.56%)</td>
<td>41 (95.35%)</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td>1 (2.44%)</td>
<td>2 (4.65%)</td>
<td></td>
</tr>
<tr>
<td>A/A</td>
<td>40 (97.56%)</td>
<td>41 (95.35%)</td>
<td>1.0</td>
</tr>
<tr>
<td>A/C</td>
<td>1 (2.44%)</td>
<td>2 (4.65%)</td>
<td></td>
</tr>
</tbody>
</table>

*P value from the Fisher exact test.

DISCUSSION

The result of this preliminary study performed on a relatively small cohort showed that the TNFR1 polymorphism examined is not associated with AS in the Russian Caucasian population. This finding, if confirmed in a larger cohort, suggests that differences exist in genetic susceptibility to AS between ethnic groups, and is consistent with some previous
investigations. For example, Bridges et al. (2002) found no difference in rs2234649 allele frequencies between African-Americans with rheumatoid arthritis and control subjects. Moreover, AS is a multifactorial pathology and genetic factors are only one element of its pathogenesis. Thus, even if an association had been established between rs2234649 and AS in the present work, we would not have considered this variant to the unique cause of this disease.

In conclusion, our results suggest that genetic testing of the rs2234649 polymorphism cannot be used to estimate AS risk and routine screening of this variant should not be recommended to determine prognosis or anticipate treatment response.

Conflicts of interest

The authors declare no conflict of interest.

REFERENCES


Genetics and Molecular Research 16 (1): gmr16019581
TNFR1 rs2234649 polymorphism and ankylosing spondylitis


