Association between C807T(C/T) polymorphism of platelet glycoprotein gene and sensitivity to ischemic stroke: a meta-analysis

Department of Neurology, Hangzhou Red Cross Hospital, Hangzhou, China

Corresponding author: C. Luo
E-mail: hhluochen@126.com

Genet. Mol. Res. 16 (1): gmr16019416
Received October 7, 2016
Accepted December 7, 2016
Published March 16, 2017
DOI http://dx.doi.org/10.4238/gmr16019416

Copyright © 2017 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License.

ABSTRACT. Ischemic stroke can lead to loss of neurologic functions. It occurs due to obstruction in blood supply to the brain. It has been proposed that C807T(C/T) polymorphism within the platelet glycoprotein gene may be associated with density and function of glycoprotein Ia/IIa receptors and contributes to the pathogenesis of thrombotic disease. We assessed the association between C807T(C/T) and risk of ischemic stroke. Databases such as PubMed, Medline, Springer, Elsevier Science Direct, Cochrane Library, Google scholar, Wanfang Data (Chinese), and Chinese National Knowledge Infrastructure (CNKI, Chinese) were used to search for relevant studies. We found 16 eligible studies, which totaled to 4897 (case group 2340; control group 2557) participants. Overall, our results showed significant associations between C807T(C/T) polymorphism and risk of ischemic stroke based on T-allele comparisons (T vs C, pooled OR = 0.78, 95%CI = 0.68-0.90, P < 0.01), TT vs CC comparisons (pooled OR = 0.58, 95%CI = 0.42-0.81, P < 0.01), recessive models (TT vs TC + CC, pooled OR = 0.72, 95%CI = 0.59-0.87, P < 0.01) and dominant models (TT + TC vs CC, pooled OR
= 0.70, 95%CI = 0.54-0.92, P < 0.05). There was no association in TC vs CC comparisons (pooled OR = 0.81, 95%CI = 0.63-1.04, P > 0.05). Subgroup analyses stratified according to Hardy-Weinberg equilibrium, sample size, and ethnicity also demonstrated significant associations between the two variables. Therefore, C807T(C/T) polymorphism in the platelet glycoprotein gene may be associated with susceptibility to ischemic stroke, and the T allele at this locus may decrease risk to ischemic stroke.

Key words: Ischemic stroke; Case-control study; C807T; Platelet glycoprotein gene; Polymorphism; Meta-analysis

INTRODUCTION

Ischemic stroke is a major global public health concern due to its high incidence around the world (Becher et al., 2016; Kang et al., 2016; Wang et al., 2016). Thirty percent of stroke patients develop dementia within three months (Ma et al., 2016). The common and major pathological change in ischemic stroke is arterial atherosclerosis (Gu et al., 2016). Stroke has high risk for recurrence, and is associated with several risk factors (Sung et al., 2016). Genetic factors may play a role in susceptibility to ischemic stroke, and genetic susceptibility has been suggested to be one of the most important risk factors involved in the etiology of ischemic stroke (Favate and Younger, 2016). Previous studies have shown that C807T(C/T) polymorphism in the platelet glycoprotein (GP) gene is associated with risk of ischemic stroke in multiple ethnicities (Kumar et al., 2015).

Genetic polymorphisms of the platelet (GP) gene influence the structure and expression level of platelet GP receptors (Murata et al., 1992; Kunicki et al., 1997; Chen et al., 2004). However, the role of genetic variations on C807T(C/T) polymorphism of the platelet GP gene in ischemic stroke progression remain undetermined. Several studies have revealed an association between C807T(C/T) polymorphism and ischemic stroke risk, however, the results were controversial and inconsistent (Corral et al., 1999; Reiner et al., 2000; Cole et al., 2003; Chen et al., 2004). To date, no meta-analysis has been conducted to determine the correlation between C807T polymorphism of platelet membrane GP Ia gene and ischemic stroke risk in the Asian population. Therefore, we aimed to examine the association between C807T(C/T) polymorphism of the platelet GP gene and ischemic stroke risk through case-control studies, and to reveal the genetic etiology (C807T) of patients with ischemic stroke.

MATERIAL AND METHODS

Source of material

Articles were retrieved from PubMed, Medline, Springer, Elsevier Science Direct, Cochrane Library, Google scholar, Wanfang Data (Chinese), and Chinese National Knowledge Infrastructure (CNKI, Chinese), dating up to June 2016. The key words “C807T”, “platelet glycoprotein gene”, “ischemic stroke”, “stroke”, “sensitivity”, “risk”, “polymorphism”, “variants”, “gene”, “study”, “survey”, “investigation”, and “trial” were used. References from retrieved papers were also examined for additional studies.
PubMed search strategy

Search strategy was as follows: (glycoprotein [Title/Abstract]) AND stroke [Title/Abstract]) AND (sensitivity[Title/Abstract]) OR risk [Title/Abstract]) AND (polymorphism [Title/Abstract]) OR variants [Title/Abstract]) OR gene [Title/Abstract]) AND (study [Title/Abstract]) OR survey [Title/Abstract]) OR investigation [Transliterated Title]) OR trial [Title/Abstract]).

Search methods

Six investigators independently performed electronic database searches. PubMed, Medline, and Springer were searched by investigators A and B; Elsevier Science Direct and Cochrane Library were searched by investigators C and D; Google scholar, Wanfang Data, and CNKI were searched by investigators E and F. Study abstracts were reviewed independently by two investigators (A and D) to determine their eligibility for inclusion. References in the studies were reviewed by investigators C and F to identify possible additional studies. Where discrepancies occurred, a third investigator (E) performed additional assessments.

Included and excluded standards of studies

Inclusion criteria

Studies meeting the following criteria were included: 1) case-control study; 2) participants’ age were not limited; 3) relationship between C807T(C/T) polymorphism of the platelet GP gene and risk for ischemic stroke were analyzed; 4) effect size was calculated using odds ratio, and sample size was not limited; 5) genotype data on C807T(C/T) polymorphism was provided in the study.

Exclusion criteria

Studies were excluded if any of the following conditions were fulfilled: 1) study design was based on family or sibling pairs; 2) genotype frequency of C807T(C/T) polymorphism was not reported; 3) association between C807T(C/T) polymorphism and ischemic stroke susceptibility was not detected; 4) there was useless data for extraction in published article.

Evaluation of quality and extraction of data

We developed and modified a data abstraction form to extract the following study details: the first author’s name, research year of study, year of study publication, location of participants, design of studies, criteria for ischemic stroke, and characteristics of participants (age, sample size, genotyping methods, and source of control group). Two investigators (A and D) independently performed data extraction according to standard protocol. A third investigator (B) reviewed the results. We then contacted authors of the chosen studies to obtain further information for data items that needed clarification. Discrepancies were resolved by discussion within our research team. Original investigators were also contacted, and were sent data extraction sheets with requests for correction. The quality of the included studies was assessed independently using the Newcastle-Ottawa scale.
Meta-analysis methods

The effect sizes were calculated using odds ratios (ORs) and 95% confidence interval (95%CI) to evaluate the association between C807T(C/T) polymorphism of the GP gene and risk of ischemic stroke in case and control groups. Studies were further stratified according to Hardy-Weinberg equilibrium (HWE), sample size, and ethnicity.

HWE was evaluated for each study using the goodness of fit and chi-square (\(\chi^2\)) test; studies with P value <0.05 were considered to be at significant genetic disequilibrium. Pooled ORs were calculated for T-allele comparisons (T vs C), codominant models (TT vs CC, TC vs CC), recessive models (TT vs TC + CC), and dominant models (TT + TC vs CC). The significance of pooled ORs was determined by the Z-test, and P-value < 0.05 was considered to be statistically significant. We assessed the within- and between-study variation or heterogeneity by Cochran’s Q-statistic (Deeks al., 2001). Effect of heterogeneity was quantified as follows: \(I^2 = 100\% \times (Q-df)/Q\) (Higgins et al., 2003). A significant Q-statistic (P < 0.10) or \(I^2 > 50\%\) indicated heterogeneity across studies, and the random effect model (DerSimonian and Laird method) (DerSimonian and Laird, 2015) was used for analysis. Otherwise, the fixed effect model (Mantel-Haenszel method) (Mantel and Haenszel, 1959) was used. Sensitivity analyses were performed to assess the stability of the effect size.

Evaluation of publication bias

We evaluated publication bias using the Egger’s linear regression test (Egger et al., 1997), which measures funnel plot asymmetry on the natural logarithm scale of the effect size. Analyses were performed using the STATA software package v.11.0 (Stata Corporation, College Station, TX, USA).

RESULTS

Characteristics of eligible studies

Following initial screening, we found 498 potentially relevant papers (PubMed: 48; Medline: 39; Springer: 61; Elsevier Science Direct: 29; Cochrane Library: 16; Google Scholar: 86; Wanfang: 92; CNKI: 127). The study selection process is shown in Figure 1. After eliminating duplicates and irrelevant studies, there were 56 potentially relevant reports. During abstract screening, 37 of these articles were excluded (16 were review articles; 21 did not report on the C807T gene). The remaining 19 studies underwent full publication review, and of these, three studies were excluded (did not report ischemic stroke data).

Detailed reports on the final 16 studies (Corral et al., 1999; Reiner et al., 2000; Sacchi et al., 2000; Cole et al., 2003; Shi et al., 2003; Yang et al., 2006; Sun et al., 2007; Chen et al., 2004, 2010; Liu et al., 2010; Hou et al., 2010; Long et al., 2010; Wang et al., 2011; Zhang et al., 2007, 2012; Shen et al., 2013) included in the meta-analysis are presented in Tables 1 and 2. The included studies were published between 1999 and 2013. A total of 4897 (case group 2340; control group 2557) subjects were included in this meta-analysis. The study sample sizes were between 192 and 545, with a mean age between 38.2 and 69.2 years old; all were case-control studies, and control groups were hospital-based healthy check-up subjects. The included studies were performed in Asia, America, Europe, and Australia. We calculated the
HWE for all publications, and found that genotype frequencies of most of the included studies were under HWE (P > 0.05). Exceptions were Shi et al. (2003), Yang et al. (2006), Sun et al. (2007), and Hou et al. (2010) (P < 0.05).

Table 1. Characteristics of studies included in the meta-analysis.

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Country</th>
<th>Ethnicity</th>
<th>NOS quality scores</th>
<th>Genotyping methods</th>
<th>Case</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>Age</td>
</tr>
<tr>
<td>Corral et al.</td>
<td>1999</td>
<td>Spain</td>
<td>European</td>
<td>8</td>
<td>PCR-RFLP</td>
<td>104</td>
<td>65.8 ± 13.8</td>
</tr>
<tr>
<td>Sacchi et al.</td>
<td>2000</td>
<td>Italy</td>
<td>NA</td>
<td>NA</td>
<td>PCR-RFLP</td>
<td>70</td>
<td>NA</td>
</tr>
<tr>
<td>Reiner et al.</td>
<td>2000</td>
<td>USA</td>
<td>American</td>
<td>NA</td>
<td>PCR-RFLP</td>
<td>106</td>
<td>57.0 ± 11.9</td>
</tr>
<tr>
<td>Cole et al.</td>
<td>2003</td>
<td>Australia</td>
<td>Australian</td>
<td>9</td>
<td>PCR-RFLP</td>
<td>179</td>
<td>66.7 ± 12.0</td>
</tr>
<tr>
<td>Chou et al.</td>
<td>2004</td>
<td>China</td>
<td>Asian</td>
<td>9</td>
<td>PCR-RFLP</td>
<td>157</td>
<td>38.2 ± 6.7</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>2006</td>
<td>China</td>
<td>Asian</td>
<td>7</td>
<td>PCR-RFLP</td>
<td>147</td>
<td>64.7 ± 19.0</td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>2007</td>
<td>China</td>
<td>Asian</td>
<td>9</td>
<td>PCR-RFLP</td>
<td>113</td>
<td>64.8 ± 10.5</td>
</tr>
<tr>
<td>Sun et al.</td>
<td>2007</td>
<td>China</td>
<td>Asian</td>
<td>9</td>
<td>PCR-RFLP</td>
<td>128</td>
<td>63.8 ± 7.4</td>
</tr>
<tr>
<td>Liu et al.</td>
<td>2010</td>
<td>China</td>
<td>Asian</td>
<td>8</td>
<td>PCR-RFLP</td>
<td>120</td>
<td>58.1 ± 17.6</td>
</tr>
<tr>
<td>Hou et al.</td>
<td>2010</td>
<td>China</td>
<td>Asian</td>
<td>9</td>
<td>PCR-RFLP</td>
<td>82</td>
<td>65.8 ± 7.9</td>
</tr>
<tr>
<td>Chen et al.</td>
<td>2010</td>
<td>China</td>
<td>Asian</td>
<td>8</td>
<td>PCR-RFLP</td>
<td>200</td>
<td>66.9 ± 9.5</td>
</tr>
<tr>
<td>Long et al.</td>
<td>2010</td>
<td>China</td>
<td>Asian</td>
<td>8</td>
<td>PCR-RFLP</td>
<td>205</td>
<td>61.2 ± 10.7</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>2011</td>
<td>China</td>
<td>Asian</td>
<td>8</td>
<td>PCR-RFLP</td>
<td>137</td>
<td>62.6-64.8*</td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>2012</td>
<td>China</td>
<td>Asian</td>
<td>9</td>
<td>PCR-RFLP</td>
<td>138</td>
<td>NA</td>
</tr>
<tr>
<td>Shen et al.</td>
<td>2013</td>
<td>China</td>
<td>Asian</td>
<td>8</td>
<td>PCR-RFLP</td>
<td>97</td>
<td>66.5 ± 11.2</td>
</tr>
</tbody>
</table>

PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism; NA = not available; *mean age.
Association between C807T (C/T) polymorphism in platelet GP gene and risk for ischemic stroke

For all models, significant heterogeneities were observed (Table 3) (Figures 2, 3, 4, 5, 6) in T-alleles (T vs C, P value by \(\chi^2 \)-based Q testing < 0.1 and I^2 = 60.8%), TT vs CC (P value by \(\chi^2 \)-based Q testing < 0.1 and I^2 = 39.3%), T vs C (P value by \(\chi^2 \)-based Q testing < 0.1 and I^2 = 40.1%), TT vs TC + CC (P value by \(\chi^2 \)-based Q testing < 0.1 and I^2 = 58.6%), and TT + TC vs CC (P value by \(\chi^2 \)-based Q testing < 0.1 and I^2 = 51.7%). Therefore, we used the random effect model to determine the association between C807T (C/T) polymorphism and risk for ischemic stroke. Overall, significant associations between C807T (C/T) polymorphism and risk for ischemic stroke were found in T-allele comparisons (T vs C, pooled OR = 0.78, 95%CI = 0.68-0.90, P < 0.01), TT vs CC comparisons (pooled OR = 0.58, 95%CI = 0.42-0.81, P < 0.01), recessive models (TT vs TC + CC, pooled OR = 0.72, 95%CI = 0.59-0.87, P < 0.01), and dominant models (TT + TC vs CC, pooled OR = 0.70, 95%CI = 0.54-0.92, P < 0.05) (Table 3). No significant associations were found in TC vs CC comparison (pooled OR = 0.81, 95%CI = 0.63-1.04, P > 0.05).

To eliminate heterogeneity, we performed subgroup analyses stratified according to HWE, sample size, and ethnicity. We found significant associations (P < 0.05) in subgroup analyses based on HWE and sample size (≤300), as well as in the Asian population.

Sensitivity analysis

We performed sensitivity analysis to determine whether these previously mentioned factors had an impact on the overall estimate. The influence of a single study on the overall meta-analysis estimate was investigated by omitting one study at a time. Our results showed that omission of any single study did not make a significant difference in the pooled effects, suggesting that our results were reliable and stable under all models (Figures 7, 8, 9, 10, and 11).

Table 2. Genotype frequencies of C807T (C/T) polymorphism and sensitivity to ischemic stroke.

<table>
<thead>
<tr>
<th>Study</th>
<th>Year of publication</th>
<th>Case genotype</th>
<th>Control genotype</th>
<th>HWE*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TT</td>
<td>TC</td>
<td>CC</td>
</tr>
<tr>
<td>Corral et al.</td>
<td>1999</td>
<td>19</td>
<td>48</td>
<td>37</td>
</tr>
<tr>
<td>Sacchi et al.</td>
<td>2000</td>
<td>19</td>
<td>31</td>
<td>20</td>
</tr>
<tr>
<td>Remer et al.</td>
<td>2000</td>
<td>7</td>
<td>21</td>
<td>8</td>
</tr>
<tr>
<td>Shi et al.</td>
<td>2003</td>
<td>9</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>Cole et al.</td>
<td>2003</td>
<td>23</td>
<td>77</td>
<td>79</td>
</tr>
<tr>
<td>Chen et al.</td>
<td>2004</td>
<td>9</td>
<td>69</td>
<td>79</td>
</tr>
<tr>
<td>Yang et al.</td>
<td>2006</td>
<td>18</td>
<td>98</td>
<td>31</td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>2007</td>
<td>6</td>
<td>43</td>
<td>64</td>
</tr>
<tr>
<td>Sun et al.</td>
<td>2007</td>
<td>15</td>
<td>85</td>
<td>28</td>
</tr>
<tr>
<td>Liu et al.</td>
<td>2010</td>
<td>33</td>
<td>56</td>
<td>31</td>
</tr>
<tr>
<td>Hou et al.</td>
<td>2010</td>
<td>42</td>
<td>156</td>
<td>104</td>
</tr>
<tr>
<td>Chen et al.</td>
<td>2010</td>
<td>31</td>
<td>107</td>
<td>62</td>
</tr>
<tr>
<td>Long et al.</td>
<td>2010</td>
<td>37</td>
<td>138</td>
<td>96</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>2011</td>
<td>39</td>
<td>53</td>
<td>45</td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>2012</td>
<td>21</td>
<td>69</td>
<td>88</td>
</tr>
<tr>
<td>Shen et al.</td>
<td>2013</td>
<td>23</td>
<td>50</td>
<td>24</td>
</tr>
</tbody>
</table>

aHWE: Hardy-Weinberg equilibrium, it was evaluated using the goodness-of-fit chi-square test. P values were presented. P < 0.05 was considered to be a departure from HWE.
Figure 2. Association between C807T(C/T) polymorphism of platelet glycoprotein gene and risk for ischemic stroke in T vs C model.

Figure 3. Association between the C807T(C/T) polymorphism of the platelet glycoprotein gene and risk for ischemic stroke in a homozygous genetic model (TT vs CC).

Genetics and Molecular Research 16 (1): gmr16019416
Figure 4. Association between the C807T(C/T) polymorphism of the platelet glycoprotein gene and risk for ischemic stroke in the TC vs CC model.

Figure 5. Association between the C807T(C/T) polymorphism of the platelet glycoprotein gene and risk for ischemic stroke in the TT vs TC+CC model.
Figure 6. Association between the C807T(C/T) polymorphism of the platelet glycoprotein gene and risk for ischemic stroke in the TT+TC vs CC model.

Table 3. Meta-analysis of the association between C807T(C/T) polymorphism and sensitivity to ischemic stroke.

<table>
<thead>
<tr>
<th>Groups</th>
<th>No. of studies</th>
<th>OR (95% CI)</th>
<th>P</th>
<th>I²</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Asian</td>
<td>4</td>
<td>0.82 (0.53-1.28)</td>
<td>0.38</td>
<td>80.4</td>
<td><0.01</td>
</tr>
<tr>
<td>Asian</td>
<td>12</td>
<td>0.76 (0.67-0.87)</td>
<td><0.01</td>
<td>45.1</td>
<td>0.05</td>
</tr>
<tr>
<td>Overall</td>
<td>16</td>
<td>0.78 (0.68-0.90)</td>
<td><0.01</td>
<td>60.8</td>
<td><0.01</td>
</tr>
</tbody>
</table>

OR, odds ratio at 95%CI; I² is represented as percentages; PH, P value for between-study heterogeneity; PA, P value for test of the association; *Random model.

Figure 7. Sensitivity analysis for the association between the C807T(C/T) polymorphism of the platelet glycoprotein gene and risk for ischemic stroke in the T vs C model.
Figure 8. Sensitivity analysis for the association between the C807T(C/T) polymorphism of the platelet glycoprotein gene and risk for ischemic stroke in a homozygous genetic model (TT vs CC).

Figure 9. Sensitivity analysis for the association between the C807T(C/T) polymorphism of the platelet glycoprotein gene and risk for ischemic stroke in the TC vs CC model.
C807T(C/T) of platelet glycoprotein gene and ischemic stroke

Figure 10. Sensitivity analysis for the association between the C807T(C/T) polymorphism of the platelet glycoprotein gene and risk for ischemic stroke in the TT vs TC+CC model.

Figure 11. Sensitivity analysis for the association between the C807T(C/T) polymorphism of the platelet glycoprotein gene and risk for ischemic stroke in the TT+TC vs CC model.

Genetics and Molecular Research 16 (1): gmr16019416
Publication bias

The Egger’s test was performed to assess the presence of publication bias. No publication bias was found in T-allele comparisons (T vs C, $t = -0.03$, $P > 0.05$), TT vs CC comparisons ($t = -0.96$, $P > 0.05$), TC vs CC comparisons ($t = -1.52$, $P > 0.05$), the dominant models (TT + TC vs CC, $t = -0.40$, $P > 0.05$), and the recessive models (TT vs TC + CC, $t = -1.09$, $P > 0.05$) (Table 4) (Figures 12, 13, 14, 15, and 16).

Figure 12. Funnel plot of the association between the C807T(C/T) polymorphism of the platelet glycoprotein gene and risk for ischemic stroke in the T vs C model.

Figure 13. Funnel plot of the association between the C807T(C/T) polymorphism of the platelet glycoprotein gene and risk for ischemic stroke in a homozygous genetic model (TT vs CC).
Figure 14. Funnel plot of the association between the C807T(C/T) polymorphism of the platelet glycoprotein gene and risk for ischemic stroke in the TC vs CC model.

Figure 15. Funnel plot of the association between the C807T(C/T) polymorphism of the platelet glycoprotein gene and risk for ischemic stroke in the TT vs TC+CC model.
DISCUSSION

Previous investigations on recurrent strokes in young adults usually involve small sample sizes, making it difficult to study the long-term trend of stroke recurrence (Giang et al., 2016). Therefore, we performed a meta-analysis to clarify the inconsistencies between previous studies, and to establish a comprehensive picture of gene-disease associations. In our meta-analysis, we combined 16 studies, which included data from 4897 (case group 2340; control group 2557) subjects.

Our results showed that C807T(C/T) polymorphism in the platelet GP gene is associated with susceptibility to ischemic stroke, and that the T allele reduced risk of ischemic stroke. Subgroup analyses stratified according to HWE, sample size, and ethnicity also showed significant associations with ischemic stroke susceptibility. This result differed from that of the meta-analysis carried out by Nikolopoulos et al. (2007), where only 7 independent studies were included. Here we present updated results on the crucial role of C807T(C/T) polymorphism in ischemic stroke.

Table 4. Publication bias (Egger’s test) in population (overall).

<table>
<thead>
<tr>
<th>Comparison</th>
<th>t</th>
<th>Egger’s test</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T vs C</td>
<td>-0.04</td>
<td></td>
<td>0.98</td>
</tr>
<tr>
<td>TT vs CC</td>
<td>-0.96</td>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td>TC vs CC</td>
<td>-1.52</td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>TT vs TC + CC</td>
<td>-0.40</td>
<td></td>
<td>0.69</td>
</tr>
<tr>
<td>TT + TC vs CC</td>
<td>-1.09</td>
<td></td>
<td>0.30</td>
</tr>
</tbody>
</table>

Figure 16. Funnel plot of the association between the C807T(C/T) polymorphism of the platelet glycoprotein gene and risk for ischemic stroke in the TT+TC vs CC model.
The platelet-collagen receptor glycoprotein Ia/IIa plays a fundamental role on the adhesion of platelets to fibrillar collagen. This process leads to platelet activation and thrombus formation, and contributes to pathogenesis of thrombotic disease (Morita et al., 2001). Atherosclerosis has great significance in the pathophysiology of ischemic stroke. In atherosclerosis, GP receptor mediates the formation of the platelet thrombus. In the early lesions, during vascular endothelial injuries under high shear, platelet receptor glycoprotein GP-IX-V mediates the adhesion of platelets to the subendothelial matrix through reactive subendothelial matrix proteins such as the von Willebrand factor. Furthermore, the platelet membrane GP Ia-IIa complex (i.e., integrin α2β1) promotes binding to collagen, while the GP IIb-IIIa platelet membrane complex interacts with fibrinogen. These processes further enhance platelet and endothelial adhesion, activation, and aggregation, resulting in thrombosis (Jackson, 2011). Previous studies have suggested that GP Ia/IIa receptor density and function may be associated with two linked and silent polymorphisms (807C/T and 873G/A) in the GP Ia gene (Morita et al., 2001; Tsantes et al., 2007).

There were some limitations in this study. First, the present meta-analysis included only published studies. Thus, existing publication bias cannot be eliminated by statistical tests. In addition, recruited studies were case-control studies (whether exposure factors are associated with ischemic stroke is often difficult to determine, so we cannot confirm a causal relationship, which is prone to selection bias when choosing subjects), and the number of studies was small (16 studies were included in this meta-analysis). The small number of included studies may limit the statistical power to identify minor effects, and may reduce significance of results in this meta-analysis.

The meta-analysis suggests that C807T(C/T) polymorphism in the platelet GP gene might be associated with susceptibility to ischemic stroke. Furthermore, the T allele at this locus may reduce one’s risk to ischemic stroke. Larger and well-designed studies based on different populations are needed to confirm our results.

Conflicts of interest

The authors declare no conflict of interest.

REFERENCES

http://dx.doi.org/10.1016/j.cct.2015.09.002

