

Development of coding single nucleotide polymorphic markers in the pearl oyster *Pinctada fucata* based on next-generation sequencing and high-resolution melting analysis

S.G. Fan¹, J.F. Wei^{1,2}, Y.H. Guo¹, G.J. Huang¹ and D.H. Yu¹

¹Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China ²College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China

Corresponding author: D.H. Yu E-mail: 18602058697@163.com

Genet. Mol. Res. 15 (4): gmr15049054 Received August 3, 2016 Accepted September 19, 2016 Published November 3, 2016 DOI http://dx.doi.org/10.4238/gmr15049054

Copyright © 2016 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License.

ABSTRACT. The pearl oyster *Pinctada fucata* is an important commercial marine shellfish that is cultured for producing saltwater pearls. In this study, 468 single nucleotide polymorphisms (SNPs) were screened from *P. fucata* transcriptome data, and 119 polymorphic SNPs were successfully isolated by a two-step small-amplicon high-resolution melting assay. Of these, 88 were annotated with BLAST in the Nr database and 90 were in the open reading frame, including 16 non-synonymous SNPs and 74 synonymous SNPs; 12 SNPs were in the 3'-untranslated region (UTR) and 1 was in the 5'-UTR. Twenty-five SNPs were randomly chosen to test the genetic diversity of 40 wild

Genetics and Molecular Research 15 (4): gmr15049054

individuals from Liusha Bay, China. All of the loci had two alleles. The observed and expected heterozygosities ranged from 0.0417 to 0.6042 and from 0.2945 to 0.5053, respectively. Minor allele frequencies ranged from 0.1771 to 0.5000, and the polymorphism information content ranged from 0.2516 to 0.3750. These novel SNP markers can contribute to *P. fucata* genetics and breeding studies.

Key words: SNP; *Pinctada fucata*; Transcriptome sequencing; High-resolution melting

INTRODUCTION

The pearl oyster, *Pinctada fucata*, is an important commercial marine shellfish that is cultured for producing saltwater pearls in China, Japan, and Australia (Yu and Chu, 2006). It is also an important animal model for investigating biomineralization (i.e., scientific, medical, and commercial applications) and evolutionary biology (Jones et al., 2013). Pearl quality has recently decreased in both China and Japan. One possible reason is that the growth performance of *P. fucata* is hampered by inbreeding during aquaculture (Wada and Komaru, 1996; Qiu et al., 2014).

Genetic markers are powerful genetics study tools, particularly for genetic mapping and trait improvement (Huang et al., 2014a). Because of their abundance, value, and efficiency, single nucleotide polymorphisms (SNPs) have become the most powerful marker system for genetic research (Gomez-Uchida et al., 2014). Compared to non-coding genomic markers, SNPs developed from functional genes may be responsible for traits of commercial interest in this species, such as growth, reproduction, and resistance (Gao et al., 2013; Klinbunga et al., 2015; Ranjan et al., 2015). Transcriptome sequencing with next-generation sequencing technologies could provide extensive resources for large-scale gene-associated SNP mining (Grabherr et al., 2011). High-resolution melting (HRM) has proven to be a simple, low-cost, and highly sensitive technique to detect SNPs, and to profile genetic variation within polymerase chain reaction (PCR) amplicons (Cui et al., 2013).

In this study, the genetic diversity and structure of a wild population of *P. fucata* from South China were examined. A total of 119 polymorphic SNPs from the transcriptome sequence were successfully isolated by HRM analysis, which can contribute to *P. fucata* genetics and breeding studies.

MATERIAL AND METHODS

DNA extraction

Forty-eight wild adult individuals of *P. fucata* (shell length, 3-4 cm) were obtained from Liusha Bay, Zhanjiang, Guangdong province, China (109°49'E, 20°26'N). Each adductor muscle was cut and stored in 95% ethanol. Genomic DNA was extracted using a Marine Animals DNA Kit (Tiangen, China) according to the manufacturer specifications. DNA integrity and purity were determined by agarose gel (1%) electrophoresis and spectrophotometry (NanoDrop[™] 2000; Thermo Fisher Scientific, USA).

Genetics and Molecular Research 15 (4): gmr15049054

Primer design

A total of 468 putative SNPs with no other predicted SNPs in the 30-bp neighboring regions were randomly chosen from *P. fucata* transcriptome data (Yu DH and Fan SG, unpublished data). The primers were designed by Primer Premier 5.0 (Premier Biosoft International, USA). Amplicon lengths ranged from 40 to 100 bp, primer lengths from 20 to 30 bp, the GC content was 40-60%, and the melting temperatures were 50°-60°C. The sequence and amplicon size of primers were shown in Table 1. Two unblocked double-stranded oligonucleotides were used as high- and low-temperature internal controls to calibrate the temperature variation between reactions (Table 2) (Seipp et al., 2007). All of the primers were synthesized and purified by Sangon Biotech (Shanghai, China).

Amplification of candidate SNPs

PCR amplification was performed in a $25-\mu$ L volume containing 1.25 U rTaq polymerase (TaKaRa, Japan), 1X PCR buffer (MgCl₂), 0.2 mM dNTPs, 0.2 μ M of each primer, and 20-50 ng genomic DNA. The PCR conditions were as follows: pre-incubation at 95°C for 5 min, followed by 30 cycles at 94°C for 20 s, 55°C or 50°C for 30 s, 72°C for 30 s, and a final extension at 72°C for 7 min. All of the PCR products were verified by 8% non-denaturing polyacrylamide gel electrophoresis (PAGE). Only primer pairs that produced a clear target band on the gel were selected for subsequent HRM analysis.

SNP validation and polymorphism detection by HRM analysis

SNP genotyping was performed using the two-step HRM method described by Wang et al. (2013, 2015), with small modifications. Genomic DNA from eight *P. fucata* individuals was used as amplification templates. After PCR amplification, 8.9 μ L PCR product, 0.1 μ L of each internal control (10 μ M), 0.7 μ L LC Green (Idaho Technology Inc., USA), and 20 μ L mineral oil (Sigma, USA) were added to BLK/WHT 96-well plates (Bio-Rad, USA). After centrifuging at 2000 g/min for 30 s, the mixture was denatured at 95°C for 10 min using a thermal cycler (Hamburg, Germany). A LightScannerTM instrument (Idaho Technology Inc., USA) was used for the HRM analysis. Fluorescence intensity data were collected over 55°-98°C at a thermal transition rate of 0.1°C/s. The HRM system software was used to analyze the melt curve peaks and genotypes.

Functional annotation

All of the unigene-obtained polymorphic SNPs were BLASTx searched in the Nr database with an e-value cutoff of 1e-5. SNP positions were determined using open reading frame (ORF) Finder (https://www.ncbi.nlm.nih.gov/orffinder/). SNP mutation type was analyzed using Primer Premier 5.0.

Genetic diversity

Twenty-five polymorphic loci were randomly chosen to examine the genetic diversity of a wild population of *P. fucata* from Liusha Bay.

Genetics and Molecular Research 15 (4): gmr15049054

Locus ID	Primer sequence (5'-3')	Amplicon size (bp)	SNP type and location	Gene annotation	Amino acid change
PF_SNP1	TAGTCGCTAACACTGCCCATTAA	59	A/T 2121	Universal stress protein A-like protein (Crassostrea gigas)	TT: act→aca
	ACTGGATGTAGAGGATTGGGGAAC				
PF_SNP2	CTGAGGTATGAGAATGGAAGGGAC	81	C/T 404	Splicing factor, arginine/serine-rich 4 (Crassostrea gigas)	DD: gac→gat
	TGGTGCTCTGCGTGGGTT				
PF_SNP4	AGATAGTCCAATCAGGTGTTCAG	86	T/A 1860	Exocyst complex component 1 (Crassostrea gigas)	3'-UTR
	CAAAACTITCTACAAGCAGGTC				
oF_SNP5	TITGTCCATTIGTTCAGCTG	80	A/T 2251	Retinal rod thodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta-like (Crassostrea gigas)	II: at a →att
	CTCGTGTTCCCAAGAAGATAC				
PF_SNP6	ACCTTGTGAACAGGCGATGC	78	A/G 597	Transcription factor HES-1 (Crassostrea gigas)	SS: tca→tcg
	GGTCGCAAGTAGTCCGCAAAT				
6dNS_4	GGACCAAATTCCTCTTGTTCTT	47	C/G 556	Death-associated protein 1 (Crassostrea gigas)	TT: ac c →acg
	GAACCTGCTCCAGCTCAAAC				
PF_SNP13	CCACTGCCTCTTTCATTACATCT	68	C/T 1404	Nucleolar protein 56 (Nasonia vitripennis)	AA: gct→gcc
	ACAGCAGGTAGAAGACAGATTGA				
PF_SNP14	TCATCGGTGCTGCCTCA	85	G/A 718	Nucleoprotein TPR (Crassostrea gigas)	GG: gg g →gga
	ACAACCCTCCCAGTCATTCC				
oF_SNP18	GAGGATTTGGCATCAGACTATTCA	70	C/A 1669	Patched domain-containing protein 3 (Crassostrea gigas)	QP: cag→ccg
	CGITCCITTCCCITTGTTCTTC				
PF_SNP26	GGTGAAGAGGGCTGTATTTGG	55	C/A 1089	Repressor of RNA polymerase III transcription MAF1 homolog isoform X1 (Crassostrea gigas)	SS: tcc→tca
	CCAGTITIGCGATTGTAGAAGAAG				
oF_SNP31	ATGGACATGAGACTTGCGATCT	60	T/C 122	Putative signal peptidase complex subunit SPC25 (Crassostrea ariakensis)	AA: gcc→gct
	CAATAAGGCAAACAGTGAGAACC				
PF_SNP33	TCGTTGTTGGAGTTTGAAGG	72	A/T 1448	GPI mannosyltransferase 1 (Crassostrea gigas)	II: ataatt
	GATCAGGCAAAACATAATGGA				
PF_SNP34	GUTGATACTGATGAGTCGTTTG	70	A/T 729	Unknown	Unknown
	CACTGCCCTATCTTACCTAT				
PF_SNP38	TGTGGAAGGAGGGTAGATGT	91	T/A 304	Unknown	Unknown
	CTTGTATCTTCAAAACTGTGCTC				
pF_SNP39	ATGGGAAGATAAACAGCAGGTA	91	T/C 1562	Hypothetical protein CGI_10011359 (Crassostrea gigas)	AA: gcc-gct
	CCTATTTGGTATCTCATCCTCATT				
PF_SNP45	TTCGTACGTCAAGGTTCCCG	94	C/T 773	Succinate-CoA ligase GDP-forming alpha subunit (Oncorhynchus mykiss)	II: atc-att
	GCCTGGAGAATGTAAGATTGGTAT				
pF_SNP50	CGCTTTTCTGTGCGAGTTG	100	A/G 6516	Uncharacterized protein LOC105335671 (Crassostrea gigas)	VI: gtt-att
	GGGATCGGAATCCTTGTTAA				
PF_SNP52	CATTCTAGCTCATTCTTGATCCCC	29	G/A 1348	Wiskott-Aldrich syndrome protein family member 3 (Crassostrea gigas)	VV: gtg-gta
	GGATAGTAGAGCCGATCAACGTAAG				

Genetics and Molecular Research 15 (4): gmr15049054

S.G. Fan et al.

ocus ID	Primer sequence (5'-3')	Amplicon size (bp)	SNP type and location	Gene annotation	Amino acid change
F_SNP53	ATTGGGAAACATATCACTGGG	89	T/C 903	28S ribosomal protein S35, mitochondrial-like isoform X1 (Aplysia californica)	SS: tcc-tct
	CATCTGCTGTATAATGGAGACTACA				
F_SNP54	GCGGCGTTTTAATCATCTC	100	G/T 877	Fatty acid-binding protein (Procambarus clarkii)	3'-UTR
	GGCATCGATCATTACCTTTCA				
F_SNP55	CCAGTCTTTGTCTGCTTTATTAA	73	C/T 621	Hypothetical protein CGI_10014470 (Crassostrea gigas)	II: ate-att
	ACATCCATCTCACATCCAACA				
F_SNP57	TTCACGTAATCGACCATACAAGC	69	G/A 275	Cytochrome c oxidase assembly factor 4 homolog, mitochondrial-like (Strongylocentrotus purpuratus)	TA: act-gct
	CCACGGAGACTGGAGAAAATG				
F_SNP58	CITTGGATGTCATTTCCTCTGG	64	G/A 1550	Protein arginine N-methyltransferase 1 (Crassostrea gigas)	EE: gag-gaa
	GCAGATGCTCCACCTAAGGA				
F_SNP60	TTCCCGCATGGGTCACA	56	C/T 857	Double-stranded RNA-binding protein Staufen-like protein 2 (Crassostrea gigas)	HH: cat-cae
	GAAACAAGAACAGGATCTGGCTA				
F_SNP61	GCCAGAGGTTTAGAGCAAGG	82	G/C 686	Structural maintenance of chromosomes protein 5-like (Crassostrea gigas)	LL: ctg-ctc
	CITGTTCTAAGCGGGCATT				
F_SNP62	GAAATCAAGGGAAACGAAGAG	58	G/T 1602	Leucine-rich repeat and fibronectin type III domain-containing protein 1-like protein (Crassostrea gigas)	KN: aag-aat
	CGGCTGCTTGAATAATAACG				
F_SNP64	CCGTGTGCAATAATTTCTCCTCT	55	G/A 2544	Cell division cycle 5-like protein (Crassostrea gigas)	RR: cgg-cga
	GGTATTAAGAAAACAGAATGGAGCC				
F_SNP66	ATATGACTACGAGATTCTCAGCAAG	74	T/A 982	N-alpha-acetyltransferase 40-like isoform X2 (Crassostrea gigas)	PP: cct-cca
	ATTCTCCAGCGGGTTTAGG				
F_SNP67	GGAGGAAACAAATGGAGGA	61	A/G 716	RNA polymerase-associated protein RTF1-like protein (Crassostrea gigas)	KK: aaa-aag
	ACCAAGTCTGTAAGTGCTGAGA				
F_SNP68	TGTCAGTACTAGCTCCCCTCAT	82	T/C 1466	Sister chromatid cohesion protein PDS5 homolog B-like (Meleagris gallopavo)	SS: tet-tee
	TCTCGGGGTCGTCCAAC				
F_SNP69	CGTGATGTTTGTGGATTTGG	54	A/T 2069	Sister chromatid cohesion protein PDS5 homolog B-like (Meleagris gallopavo)	LL: cta-ctt
	GCTGTCTGTGATATTGCCCTAG				
F_SNP70	CTCGTATCATAACCATTGACGT	80	T/C 2984	Cullin-3-B (Crassostrea gigas)	AA: gca-gcg
	AGCAGCTCTGAACAACAACTIT				
F_SNP71	ACAGCTTGACAGCGCCTCT	72	G/T 232	28S ribosomal protein S5, mitochondrial (Crassostrea gigas)	QK: cag-aag
	CAAAACAAAACGAAAAGTTCCTAT				
F_SNP73	CAGGCAGGAGAATGTGAGA	100	T/C 376	Unknown	Unknown
	TGCTACACTGAAGGCTTTATGA				
F_SNP75	CCATCCATAGCCCTGCGTTTT	68	C/A 1800	Tumor necrosis factor receptor-associated factor 6 (Pinctada martensii)	GG: ggc-gga
	TCCCCTTGCGGCATCCAC				

Novel coding SNP markers in Pinctada fucata

Genetics and Molecular Research 15 (4): gmr15049054

a	Primer sequence (5'-3')	Amplicon size (bp)	SNP type and location	Gene annotation	Amino acid change
777	TCCTTCGCACCTAGTTTCCC	87	A/G 1585	Phosphoinositide 4-kinase beta (Crassostrea gigas)	TA: aca-gca
	CCTGTAGCATCTGACCTTGACCT				
1P78	AAGATATTATCCAAGGAGCGACC	46	T/A 3056	Manganese-transporting ATPase 13A1-like (Crassostrea gigas)	PP: cct-cca
	CCGCAAACTGTAAAACTACTGTGAGT				
IP82	ATTGCCTGGAGGAGGTTCG	53	T/C 397	HBS1-like protein (Crassostrea gigas)	LL: tta-cta
	GACTTGTTCCGGGGACAGTTTCT				
P83	GCGAGGACTACAAACAAGATATG	93	C/A 2545	Enhanced at puberty protein 1-like protein B (Crassostrea gigas)	3'-UTR
	CCACGATTTCCAAACCGAG				
P84	GCATCCGCACAGACCATT	94	G/A 2122	Hypothetical protein CGI_10021394 (Crassostrea gigas)	5'-UTR
	TTAGCATCCAGAAGGACTCGA				
385	TAACTTCCCTGCAACTGG	86	A/G 2748	Unknown	Unknown
	AAGTCCCTCTATCACAGCAAATCAG				
880	ATGTTGCTTAGCACGAGCCC	78	G/A 1066	CD63 antigen-like (Crassostrea gigas)	VV: gtg-gta
	CCTGTCCCCGTCTAGTGTTGT				
92	AGAGGGGGGAAAGCCAA	52	A/G 588	Heterochromatin protein 1-binding protein 3 (Crassostrea gigas)	SS: tca-tcg
	TGGCATTATCCTCAGACTTCC				
395	AACGATTCCCAGGGCGTAC	77	T/C 361	NADH dehydrogenase (ubiquinone) iron-sulfur protein 3, mitochondrial-like isoform X1 (Crassostrea gigas)	RR: cgc-cgt
	GAAAGGATAGTCATAGAGCCTGTAGAA				
86	TCTAATACCGACCAGGCTTCACA	99	A/C 2163	Calcium-responsive transcription factor-like (Aphysia californica)	II: ata-atc
	CAGATCCGTACACGAGTCTACCATAC				
103	CTGAACTGGAAAGGGAAAT	61	A/T 779	Unknown	LQ: ctg-cag
	GATGCCCATTAGAAATCTTC				
105	ACAGCATTCCGCCATGTTTGG	88	A/C 2043	Bromodomain adjacent to zine finger domain protein 2B (Crassostrea gigas)	PP: cca→ccc
	CGGGTGACGACGACGAAGATAGA				
132	CTCTGCCTTTCTAGCTCCTCTTGC	81	T/C 1904	Unknown	KK: aaa-aag
	TGCCCGTGAAGCCTTGGAT				
134	CGAGCGTACCGTAGTAAATGAAGC	61	A/G 3671	Ubiquitin carboxyl-terminal hydrolase 25 isoform X3 (Chrysemys picta bellit)	3'-UTR
	TCAGACATTAGCCAGCGAGACAA				
138	GGCTCTAAGTACCGTCCTCACC	58	A/G 2011	Unknown	SS: tcg-tca
	GCAACAGAATGCCCACAACA				
2141	GGGTGTCCGTCAAACTTCTT	46	A/G 993	AP-2 complex subunit alpha-2 (Crassostrea gigas)	QQ: caa-cag
	TCTGTGAGTCTGGTTCTTACTGC				
P142	AGCTGTAGCCGAGGAGAAG	66	G/A 2079	AP-2 complex subunit alpha-2 (Crassostrea gigas)	KK: aag-aaa
	TGTGGAGTAGGAGGATGGTTA				
P147	AACGATTATTTGGCACTGGA	54	C/T 1129	RNA-binding protein PNO1-like (Crassostrea gigas)	EE: gag-gaa
	AATTGACAGGAGGAAGGAAGTCAGA				

Genetics and Molecular Research 15 (4): gmr15049054

cus ID	Primer sequence (5^{-3})	Amplicon size (bp)	SNP type and location	Gene annotation	Amino acid change
SNP155	CATGGGTAGTGTTCACTCTGTGA	72	C/T 2215	Pre-rRNA-processing protein TSR1-like protein (Crassostrea gigas)	VV: gtc-gtt
	AATGGGTAACCACTAAGGACGA				
SNP156	TGAAAGAAAATGGGACAGGT	94	A/G 195	F-box only protein 8 (Crassostrea gigas)	NS: aat-agt
	TCGTCAAGTCGGGGAA				
SNP157	ACATTCCGGCAGACTCAAC	90	G/T 81	Membrane magnesium transporter 1-like (Crassostrea gigas)	AA: gct-gcg
	TGGGCAGCAGAATATGCA				
SNP164	CGCAAAGCATATCGTTAAGTGAGAA	86	T/A 203	SRY-related HMG-domain containing transcription factor 9 (Pinctada fucata)	3'-UTR
	TGGGGCTGATTCCTTATGG				
SNP168	TTTTGTTCAGTTGGCGGAGA	78	G/A 1079	Uncharacterized protein LOC105333005 isoform X2 (Crassostrea gigas)	TA: act-gct
	ACCTACTGCCTCTGTTAGTTCTCC				
SNP189	TGCTCGCTTCCATCAAC	94	A/T 3855	Hypothetical protein CGI_10025135 (Crassostrea gigas)	3'-UTR
	GTCACTTAGGACATCTTCACG				
SNP206	CAGGTGGGGAAAATGAGAA	73	A/C 267	Unknown	NK: aac-aaa
	GGTATACTTGCATAATGTCCGTAC				
SNP208	GTTAGAACAGTTGAATGACGAGTC	85	A/G 1457	Unknown	KK: aaa-aag
	TCTGTCAGCATCCTCCTCAAT				
SNP212	ATGAGTTCCACGCCCAGTGA	26	T/G 2415	Unknown	SS: tct-tcg
	GGAATGTACTGCTTGGTTCGTTAT				
SNP213	TCCATTAGTACTCGCCAGTTTAGC	94	G/A 6265	Unknown	LL: ttg-tta
	CAACTGTCGGGTATCAAAGGAA				
SNP214	TTATTGTCCCTGGTAGGCTTCT	48	G/T 699	Unknown	Unknown
	GCTTGCACGATTAACTAGGATGA				
SNP215	ATGCCATAGCCTCCAACCC	28	A/T 805	Unknown	PP: cca-cct
	CGGCAACCGTTCGTGAAA				
SNP219	AGGCAGATGAGTCTACCACCAGG	96	G/A 4887	Unknown	PP: ccg-cca
	AGAGTGAGGGGACATCAGGAG				
SNP221	TGTCAGACCTCTACGGCTAAA	59	T/C 283	RNA polymerase II elongation factor ELL (Gallus gallus)	3'-UTR
	GGATTGAGATAACCGAGTGCT				
SNP228	GTACATACAATITGCTCGCTAG	86	G/A 832	Glutaryl-CoA dehydrogenase, mitochondrial (Crassostrea gigas)	3'-UTR
	TGTGATACTCAGAATGTCAAGC				
SNP229	AAAACGACTAGGTCTGTAGCTGA	80	A/G 294	Unknown	QQ: cag-caa
	GGATTTCCAAACTTGGACTCTT				
SNP231	CTTCGTCGAGGTGAGCTAAA	26	C/A 167	Unknown	TK: aca-aaa
	TTGATTGCTGAGTGATAGGCT				
SNP235	CTATGGTAAACATAGTCGCCATAT	73	G/C 132	Unknown	Unknown
	ACTAAAGGGGCAAGGAGGTAT				

Novel coding SNP markers in Pinctada fucata

Genetics and Molecular Research 15 (4): gmr15049054

Primer sequence (5'-3')		Amplicon size (hn)	SNP type and location	Gene annotation	Amino acid change
TCCCAAGCTGTAACGTCTAT	5	42 42	C/T 1884	Serine/threonine-motein phosphatase 2A 56 kDa reoulatory submit alpha isoform (Crascostrea cioxe)	AV · gen-ote
GGGGCTCTATACTATCGAAT	GTG	1		(m98 na moona a) more and na maga frannaga new ocare consudered mand annovamented	200 200
CTATAAGTGCTACATGCACC	AG	73	T/A 109	Unknown	Unknown
GTCAAGGTCAGATTTCAATA	GTC				
AACTGTTCATCCCCATCATC	IG	83	A/G 583	Histidine triad nucleotide-binding protein 1 (Crassostrea gigas)	:tag-taa
CCCCAAGCTCCTACTCATTT	IC				
GCTGAAACAAAACAAGCCA7	_	53	T/G 77	Unknown	Unknown
CCGTCCTTACCAAATTCTATC	т				
CCATGAACAGAATGAGACC/	\T _	72	4312 C/T	Laminin subunit alpha (Crassostrea gigas)	YY: tae-tat
TCAACTCTAAGGAATCCGAC					
CCGAACAAGAATTACGCA		78	A/G 285	Unknown	Unknown
TCACATCCTGATTTTGCCT	1				
GCAGGCTAAAGCAGTAGGA/	AAGA	85	C/A 844	Ubiquitin carboxyl-terminal hydrolase 14 (Crassostrea gigas)	TT: aca-acc
ATCATCAGGGAACCAATAGC	JGA D				
TGGGGTGTCCATCGTGAA	<u>ı</u>	80	C/T 1488	SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (Crassortrea gigas)	LL: tta-cta
AAAGAAGACAGAGGAACT	GAAGAC				
ATCTGGATCGGTGAACTTGA	1	54	T/C 271	JNK1-associated membrane protein (Harpegnathos saltator)	LL: ttg-ctg
GTTCCGCTCCCCGTTAT					
TCAGCTCAAGTTCCTCCAGT.	IC	89	644 A/G	Polyglutamine-binding protein 1 (Crassostrea gigas)	SS: tcg-tca
TTTGGAGTCATCGTCATAGC	5				
TTCTTATGTCTGACTAAGGG	CTCG	86	443 G/A	Mitochondrial ribosomal protein S11 (Nilaparvata lugens)	PP: cca-ccg
GACACTTGTGCGATGATACT	GG				
CAAGTCAGGTTGGGGGCATT		87	615 T/C	Stress-70 protein, mitochondrial (Crassostrea gigas)	FF: ttt-tte
GATAGTTITTCTGCGGTTTCTT	TC				
GGATGTTATTCTGGTCGGAG		100	1251 A/G	Stress-70 protein, mitochondrial (Crassostrea gigas)	GG: ggg-gga
ATCGGGGTTCACAGCCT	1				
TAACCATCCACAGACACCAA	AGTA	51	420 T/A	Small nuclear ribonucleoprotein F (Crassostrea gigas)	IN: atc-aac
GCTGAAGTGGGGGAATGGAA	IA				
CAGAAAGATAACAACTGTGC	366	41	1672 T/C	Homologue of Sarcophaga 26, 29 kDa proteinase (Periplaneta americana)	VV: gtt-gtc
AAGGTCGGATTGGTGGC					
ATGCACCACCTACTCAAAGA	.CA	82	790 G/A	Putative sodium/potassium-transporting ATPase subunit beta-2 (Crassostrea gigas)	3'UTR
GACTCAGTATCAAAACAGAA	VGCAG				
AGCCTAACGAGTTACCCCAG	I	78	915 C/T	Pre-mRNA-processing-splicing factor 8 (Crassostrea gigas)	DD: gac-gat
CCCATGATGGATTGTCGG					
CAAGTAGATACCAATGAGC/	AGCA AGCA	85	1392 C/G	Histone-Iysine N-methyltransferase PRDM9 (Cvassostrea gigas)	PP: ccg-ccc
CCACATATTGGACAACGTAG	BTG				

Genetics and Molecular Research 15 (4): gmr15049054

us ID	Primer sequence (5'-3')	Amplicon size (bp)	SNP type and location	Gene annotation	Amino acid change
SNP343	AATGACGGAGGAGCGTTACA	65	2048 A/G	RAD50-interacting protein 1-like (Aplysia californica)	QQ: caa-cag
1	TCCCCGAATAGAGGAAAGAG				
SNP344	ACATCCCTTGAGATGTGAGGG	73	606 A/G	Arrestin domain-containing protein 2 (Crassostrea gigas)	PP: cca-ccg
	GCGGGGAAAACAGACTTGG				
SNP347	TTCACCTGACCGCTGTTCC	100	1292 C/G	Protein rogdi-like (Crassostrea gigas)	VV: gtg-gtc
1	GGA GATTTCCACATAAACCAGG				
SNP357	ATCCAGGGAGAATATCGGG	43	256 T/C	Cullin-4A (Crassostrea gigas)	VV: gtt-gtc
1	TTCAGTCATTTGTGGCTCTTC				
SNP369	GCCCGTITTGTTCTACCATCG	88	1804 T/C	ATP-binding cassette sub-family D member 3 (Crassostrea gigas)	VA: gtg-gcg
1	GGTACATGAATCCTTCTACATCTACAC				
SNP374	CAACCTTGGCTAGAGCAACA	81	2109 A/G	Protein disulfide-isomerase A3 (Crassostrea gigas)	GR: gga-aga
1	GCAAAA GATTA GCCCCTGAG				
SNP375	GATGCTCTGGCAAAGCTACA	93	505 C/T	Ras-related GTP-binding protein C (Crassostrea gig as)	NN: aac-aat
	GCCGTCTACTTTATGTATGAACAC				
SNP376	CCTACCTGTATGGCCTACATCC	60	1158 T/C	Dynein beta chain, ciliary (Crassostrea gigas)	NN: aat-aac
1	GCTGCATCTCAAACACGGTC				
SNP383	TCGTCCCATTCTTCACCG	72	299 T/C	Wiskott-Aldrich syndrome protein family member 3 (Crassostrea gigas)	PL: ccg-ctg
	TGACATGAGGCGTAAAGCTG				
SNP399	CCAAATGGAAATTCCGTTGA	65	208 A/G	Plancitoxin-1 (Crassostrea gigas)	VV: gta-gtg
	GCTITATTCTTGGTGTTCTCAGGTAG				
SNP416	AGCAGACCTACCACATCGTT	0/	657 A/G	Unknown	Unknown
	TTGTCCATGTAACAGTCCTATCA				
SNP425	GTTCTGACTCCTCATTTATAGGGT	63	2497 C/T	Unknown	Unknown
	CCATAAATAGACTGACTGAGGCT				
SNP426	TCAGGTACACGTCGATAACA	78	231 G/C	Unknown	Unknown
1	TATTGCGCCAGTAACTACAT				
SNP427	GATCCCTATAATCGTGTCGCC	17	1039 C/T	Unknown	HH: cat-cac
1	GGCTAATTACAGGGACAAATACCA				
SNP433	AGCATACTTCAATGATTCCCAGA	62	655 C/T	Heat shock protein 70 (Pinctada fucata)	AA: gct-gcc
1	TGAGACCAGCGATTGTGCC				
SNP437	AAGAATTTGGTGCAAGATGTG	56	1900 A/T	Unknown	Unknown
1	AAAGCGACATTTCCCAGA				
SNP441	GCCTTATTGGCATATCTACTATG	89	248 T/A	Unknown	Unknown
	GAGTCGGCTTTTACAAATGAT				
SNP444	TTTCGCCCTCGGCAACAA	48	1280 C/T	Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 2 (Crassostrea gigas)	LL: ctc-ctt
1	CCAATCAGAAGACGGACCAAGAA				
SNP445	GACCAAAGGTCATGTGACCAAGG	84	183 C/A	Unknown	ED: gaa-gac
1	CGATA A GO ACCOACTOC A ATCT				

Novel coding SNP markers in Pinctada fucata

Genetics and Molecular Research 15 (4): gmr15049054

Table 1.	Continued.				
Locus ID	Primer sequence (5'-3')	Amplicon size (bp)	SNP type and location	Gene annotation	Amino acid change
PF_SNP448	TGCACCTTTAGACACTGTTTGTAC	92	1699 C/T	Zinc finger CCCH domain-containing protein 15 (Crassostrea gigas)	LL: ctg-cta
	AGCAACAGGAGGCTAAGAAAA				
PF_SNP454	ACGCATCAATAACTCAGTCTTCG	78	2897 G/A	Ribose-phosphate pyrophosphokinase 1 (Crassostrea gigas)	TT: aca-acg
	GGAGCTTGTTTCATTCTTTCCT				
PF_SNP459	TCCCCGTTTGATGCGTC	66	1737 A/G	ADP-ribosylation factor-binding protein GGA1-like isoform X1 (Crassostrea gigas)	LL: ttg-tta
	GGCCGTTGACTGTGGTGA				
PF_SNP471	CCTCCTTCTAGGCATAAATTGAC	100	1717 A/G	Unknown	3 UTR
	TCTCCTCAAAAGACGACACTACTC				
PF_SNP474	ACCCGGTTACTGTTTTGGG	83	3323 G/A	Protein phosphatase 1 E (Crassostrea gigas)	Unknown
	TGACTTTCGTGCGTGTTCC				
PF_SNP480	CGAAACGGACAGTAAGAAAGAA	100	906 C/A	Hypothetical protein CGL_10022149 (Crassostrea gigas)	TT: acc-aca
	ATGGGTTTACGATTGGCAC				
PF_SNP482	GCCTTCCATAGATGTAGAGTATTCAG	96	842 G/A	Uncharacterized protein LOC105327635 (Crassostrea gigas)	LL: cta-ctg
	CATAACCTATCCTTTCACATCCC				
PF_SNP484	TGCCAAGGACGGAGATG	88	573 T/C	Fidgetin-like protein 1 (Crassostrea gigas)	3'-UTR
	TCAAAGAAAGGTGAGAATAGCC				
PF_SNP485	TATGACATCTATCCAATGGCAAG	92	215 A/T	Troponin T (<i>Mizuhopecten yessoensis</i>)	3'-UTR
	TCCCCTATTCTTTGTAGCGTA				
PF_SNP488	TCTCGTGATCCCAACGAAGTAGC	84	553 T/G	T-complex protein 1 subunit alpha-like (Crassostrea gigas)	SS: tct-tcg
	AACGGTTGTTCCGGGGGGGGT				
PF_SNP489	GAGGACTGGTTCATTTGTTGTG	99	1060 T/G	Unknown	Unknown
	TGTCAGCGCCTTATTCC				
UTR, untra	nslated region.				

Genetics and Molecular Research 15 (4): gmr15049054

The PCR process and HRM analysis were performed as described above. The number of alleles per locus, effective number of alleles, observed heterozygosity (H_0), expected heterozygosity (H_E), and minor allele frequency (MAF) were assessed using the POPGENE 32 software (Yeh et al., 2000), and the polymorphism information content (PIC) was calculated using the PICcalc online software (Nagy et al., 2012).

Table 2. Sequences	and predicted and observed melting temperatu	res of internal temperat	ture controls.
Name	Forward/reverse sequence (5'-3')*	Predicted temperature (°C)	Observed temperature (°C)
High-temperature sequences	F:GCGGTCAGTCGGCCTAGCGGTAGCCAGCTG CGGCACTGCGTGACGCTCAG R:CTGAGCGTCACGCAGTGCCGCAGCTGGCTACCGC TAGGCCGACTGACCGC	90.02	90.08
Low-temperature sequences	F:ATCGTGATTTCTATAGTTATCTAAGTAGTTGGCAT TAATAATTTCATTTT R:AAAATGAAATTATTAATGCCAACTACTTAGATAA CTATAGAAATCACGAT	68.5	68.5

*All of the sequences were blocked with a phosphate at the 3'-end.

RESULTS AND DISCUSSION

Small-amplicon HRM assays (SA-HRMAs) provide a rapid, inexpensive, and highthroughput closed-tube method for genotyping (Smith et al., 2010). To ensure SA-HRMA accuracy, we used three criteria: 1) SA-HRMA amplicons were no more than 100 bp long, which ensured that homozygous genotypes of alleles were easily distinguished; 2) only one SNP was present in each amplicon; and 3) high- and low-temperature controls were added for each amplicon, which decreased melting temperature variations attributable to the instrument or solution chemistry and corrected melting profiles (Seipp et al., 2007). An improved twostep SA-HRM method for Pacific oyster (*Crassostrea gigas*) SNP validation has been shown to be efficient and economical (Wang et al., 2013, 2015), and this method was successfully used to validate 119 polymorphic SNPs from *P. fucata* transcriptome data, demonstrating that it is feasible in shellfish.

A subset of 468 primers was randomly designed to validate the SNP predictions. No amplification products were seen in 66 sets of primers, and introns were found in genomic DNA but not the transcriptome. If the primer flanked, or was located in, an intron, the intervening fragment could not be amplified. A total of 173 sets of primers amplified multiple bands, and 229 amplified a clear target band on PAGE. The ratio of primer screening was 48.93%, which is higher than previously reported values of 41.67% (Zhang et al., 2015) and 28.10% (Huang et al., 2014b).

All of the SNP-containing unigenes were annotated with the corresponding top best BLASTx hits, and 88 SNPs were annotated though BLASTx in the Nr database (Table 1). Of these, heat-shock protein 70 is expressed in response to changes in temperature, bacterial infection, or pH. Its main function is to promote protein folding, and thereby prevent the cellular accumulation of non-native proteins (Mymrikov et al., 2011). F-box proteins are an expanding family of eukaryotic proteins, characterized by an approximately 40-amino-acid motif (Cenciarelli et al., 1999). F-box proteins were first characterized as components of SCF ubiquitin-ligase complexes, in which they bind substrates for ubiquitin-mediated proteolysis (Kipreos and Pagano, 2000). Fatty acid-binding proteins participate in lipid uptake, transport, and homeostasis (Bayır et al., 2015). Sox9 (SRY-related HMG-domain-containing transcription factor 9) and cullin-3-B play important roles in testis development (Bergstrom et al., 2000; Lu et al., 2005). Among the 229 well-amplified SNPs, 119 (51.97%)

Genetics and Molecular Research 15 (4): gmr15049054

were polymorphic in 8 *P. fucata* individuals, according to the SA-HRMA (Table 1). Seventyfive SNPs were genotyped as transitions, including 40 A/G and 35 C/T, and 44 were genotyped as the transversions 11 A/C, 18 A/T, 6 C/G, and 9 G/T. According to ORF Finder, 90 SNPs were located in the ORF, including 16 non-synonymous SNPs and 74 synonymous SNPs; 12 SNPs were located in the 3'-untranslated region (UTR), and 1 was located in the 5'-UTR. SNPs within a coding sequence may change a protein's amino acid sequence and structure, thus influencing its functions (Gao et al., 2014; An et al., 2015). The post-transcriptional regulation of gene expression is crucial for many physiological processes. SNPs within UTRs may have consequences for gene splicing, expression, and regulation (Malodobra-Mazur et al., 2016; Xu et al., 2016). SNPs developed from functional genes may be used in association studies, which could genetically improve species. For example, some SNPs are associated with growth traits in the pearl oyster (Shi et al., 2014), and SNPs screened from the myostatin gene are associated with growth traits in the scallop and carp (Wang et al., 2010; Guo et al., 2011; Liu et al., 2012; Sun et al., 2012). All of the annotation unigenes and their SNPs may be useful for studying the commercial traits of *P. fucata*, such as growth, resistance, and reproduction.

Twenty-five SNPs were successfully used to test the genetic diversity of 40 wild *P*. *fucata* from Liusha Bay, China (Table 3). All of the SNP loci had intermediate PIC values (0.25 < PIC < 0.5), with a mean of 0.3336. The H_0 was 0.0417-0.6042 and the H_E was 0.2945-0.5053. Li et al. (2016) used SNP loci to analyze the genetic diversity of *P. fucata* individuals from three families, and obtained PIC values of 0.2435, 0.2479, and 0.2977. Huang et al. (2014a) used SNP loci to study the genetic diversity of a wild *P. fucata* population in Shenzhen, China, and reported MAF, H_0 , and H_E values of 0.0642-0.4375, 0.1282-0.4872, and 0.1215-0.4984, respectively. These findings indicate that the Liusha population genetic diversity is higher than that in culture or in the Shenzhen population.

Locus	NE	Ho	HE	MAF	PIC
PF_SNP1	1.7041	0.5000	0.4175	0.2917	0.3270
PF_SNP9	1.9321	0.6042	0.4875	0.4062	0.3668
PF_SNP18	1.9965	0.5417	0.5044	0.4792	0.3746
PF_SNP31	1.8221	0.3125	0.4559	0.3438	0.3481
PF_SNP33	1.7771	0.1458	0.4419	0.3229	0.3405
PF_SNP52	1.9459	0.4167	0.4912	0.4167	0.3685
PF_SNP55	1.6265	0.3542	0.3893	0.2604	0.3108
PF_SNP58	1.9991	0.6042	0.5050	0.4896	0.3749
PF_SNP64	1.4113	0.2292	0.2945	0.1771	0.2516
PF_SNP67	1.9584	0.4792	0.4945	0.4271	0.3700
PF_SNP68	1.9965	0.2500	0.5044	0.4792	0.3746
PF_SNP69	1.8824	0.4583	0.4737	0.3750	0.3589
PF_SNP70	2.0000	0.4583	0.5053	0.5000	0.3750
PF_SNP71	1.5463	0.2917	0.3570	0.2292	0.2915
PF_SNP73	1.8000	0.4583	0.4491	0.3333	0.3444
PF_SNP75	1.8633	0.1875	0.4682	0.3646	0.3546
PF_SNP77	1.6000	0.2500	0.3789	0.2500	0.3047
PF_SNP82	1.9692	0.5000	0.4974	0.4375	0.3714
PF_SNP83	1.8432	0.0417	0.4623	0.3542	0.3515
PF_SNP84	1.5463	0.2500	0.3570	0.2292	0.2915
PF_SNP88	1.4922	0.1667	0.3333	0.2083	0.2768
PF_SNP92	1.7041	0.5833	0.4175	0.2917	0.3270
PF_SNP95	1.5463	0.2917	0.3570	0.2292	0.2915
PF_SNP98	1.4922	0.1667	0.3333	0.2083	0.2768
PF_SNP103	1.6528	0.4167	0.3991	0.2708	0.3165
Average	1.7643	0.3583	0.4310	0.3350	0.3336

 Table 3. Summary of 25 single nucleotide polymorphisms in wild *Pinctada fucata* individuals.

 $H_{\rm E}$, expected heterozygosity; $H_{\rm O}$, observed heterozygosity; MAF, minor allele frequency; $N_{\rm E}$, effective number of alleles; PIC, polymorphism information content.

Genetics and Molecular Research 15 (4): gmr15049054

HRM technology can directly distinguish between different genotypes based on melting peak profiles (Smith et al., 2010). Figure 1a and b show the melting curve analyses of PF_SNP9 and PF_SNP98, respectively.

Figure 1. Genotyping results using high-resolution melting with a small amplicon. **a.** PF_SNP9, homozygotes (GG and CC) and heterozygotes (GC) are represented by red, blue, and gray curves, respectively. **b.** PF_SNP98, homozygotes (AA and CC) and heterozygotes (CA) are represented by gray, blue, and red curves, respectively.

In conclusion, 119 polymorphic SNPs were successfully isolated by SA-HRMA, thus contributing to our understanding of *P. fucata* genetics and breeding.

Conflicts of interest

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

Research supported by the PhD Start-Up Fund of Natural Science Foundation of Guangdong Province (#2014A030310237), the Natural Science Foundation Program of Hainan Province (#20154180), the Basic Scientific Research Fund for the Central Institutes of Public Welfare (South China Sea Fisheries Research Institute, #2014TS08), the Special Fund for Marine Fisheries Research and Extension of Guangdong Province (#A201401A07, #Z2015010), the National Natural Science Foundation of China (#31372525), and the Earmarked Fund for China Agriculture Research System (#CARS-48).

REFERENCES

An XP, Song YX, Hou JX, Han P, et al. (2015). Mutations in the *MTHFR* gene and their associations with milk production traits in dairy goats. *Small Rumin. Res.* 130: 76-80. <u>http://dx.doi.org/10.1016/j.smallrumres.2015.06.008</u>

Genetics and Molecular Research 15 (4): gmr15049054

- Bayır M, Bayır A and Wright JM (2015). Divergent spatial regulation of duplicated fatty acid-binding protein (fabp) genes in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. Part D Genomics Proteomics 14: 26-32. <u>http:// dx.doi.org/10.1016/j.cbd.2015.02.002</u>
- Bergstrom DE, Young M, Albrecht KH and Eicher EM (2000). Related function of mouse SOX3, SOX9, and SRY HMG domains assayed by male sex determination. *Genesis* 28: 111-124.<u>http://dx.doi.org/10.1002/1526-968X(200011/12)28:3/4<111::AID-GENE40>3.0.CO;2-5</u>
- Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, et al. (1999). Identification of a family of human F-box proteins. *Curr. Biol.* 9: 1177-1179. <u>http://dx.doi.org/10.1016/S0960-9822(00)80020-2</u>
- Cui G, Zhang L, Xu Y, Cianflone K, et al. (2013). Development of a high resolution melting method for genotyping of risk HLA-DQA1 and PLA2R1 alleles and ethnic distribution of these risk alleles. *Gene* 514: 125-130. <u>http://dx.doi.org/10.1016/j.gene.2012.11.004</u>
- Gao L, Chen M, Chang Y, Ji N, et al. (2013). Development of SNP markers associated with defense mechanism of sea cucumber, *Apostichopus japonicas. Conserv. Genet. Resour.* 5: 587-591. <u>http://dx.doi.org/10.1007/s12686-013-9858-z</u>
- Gao Q, Ju Z, Zhang Y, Huang J, et al. (2014). Association of TNP2 gene polymorphisms of the bta-miR-154 target site with the semen quality traits of Chinese Holstein bulls. *PLoS One* 9: e84355.<u>http://dx.doi.org/10.1371/journal.pone.0084355</u>
- Gomez-Uchida D, Seeb L, Warheit K, McKinney G, et al. (2014). Deep sequencing of the transcriptome and mining of single nucleotide polymorphisms (SNPs) provide genomic resources for applied studies in Chinook salmon (Oncorhynchus tshawytscha). Conserv. Genet. Resour. 6: 807-811. http://dx.doi.org/10.1007/s12686-014-0235-3
- Grabherr MG, Haas BJ, Yassour M, Levin JZ, et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.* 29: 644-652. <u>http://dx.doi.org/10.1038/nbt.1883</u>
- Guo L, Li L, Zhang S, Guo X, et al. (2011). Novel polymorphisms in the myostatin gene and their association with growth traits in a variety of bay scallop, Argopecten irradians. Anim. Genet. 42: 339-340. <u>http://dx.doi.org/10.1111/j.1365-2052.2011.02172.x</u>
- Huang X, Wu S, Guan Y, Li Y, et al. (2014a). Identification of sixteen single-nucleotide polymorphism markers in the pearl oyster, *Pinctada fucata*, for population genetic structure analysis. *J. Genet.* 93: e1-e4.
- Huang J, Zhang Y, Li J and Yu Z (2014b). Development of SNP markers in *Crassostrea hongkongensis* based on the next-generation sequencing and high resolution melting analysis. *Conserv. Genet. Resour.* 6: 559-562. <u>http://dx.doi.org/10.1007/s12686-014-0218-4</u>
- Jones DB, Jerry DR, Forêt S, Konovalov DA, et al. (2013). Genome-wide SNP validation and mantle tissue transcriptome analysis in the silver-lipped pearl oyster, *Pinctada maxima*. Mar. Biotechnol. (NY) 15: 647-658. <u>http://dx.doi.org/10.1007/s10126-013-9514-3</u>

Kipreos ET and Pagano M (2000). The F-box protein family. Genome Biol. 1: REVIEWS3002.

- Klinbunga S, Sittikankaew K, Jantee N, Prakopphet S, et al. (2015). Expression levels of vitellogenin receptor (Vtgr) during ovarian development and association between its single nucleotide polymorphisms (SNPs) and reproductionrelated parameters of the giant tiger shrimp *Penaeus monodon. Aquaculture* 435: 18-27. <u>http://dx.doi.org/10.1016/j.</u> <u>aquaculture.2014.09.013</u>
- Li Y, Liu W, Lin J and He M (2016). Development of SNP markers in *Pinctada fucata* and its application for family genetic analysis. *Mar. Sci. Bull.* 35: 96-102.
- Liu L, Yu X and Tong J (2012). Molecular characterization of myostatin (MSTN) gene and association analysis with growth traits in the bighead carp (*Aristichthys nobilis*). *Mol. Biol. Rep.* 39: 9211-9221. <u>http://dx.doi.org/10.1007/ s11033-012-1794-6</u>
- Lu L, Zhou ZM, Huang XY, Xu M, et al. (2005). Identification and characterization of cul-3b, a novel hominine CUL-3 transcript variant. *Asian J. Androl.* 7: 205-211. <u>http://dx.doi.org/10.1111/j.1745-7262.2005.00024.x</u>
- Malodobra-Mazur M, Bednarska-Chabowska D, Olewinski R, Chmielecki Z, et al. (2016). Single nucleotide polymorphisms in 5¢-UTR of the *SLC2A4* gene regulate solute carrier family 2 member 4 gene expression in visceral adipose tissue. *Gene* 576: 499-504. <u>http://dx.doi.org/10.1016/j.gene.2015.10.067</u>
- Mymrikov EV, Seit-Nebi AS and Gusev NB (2011). Large potentials of small heat shock proteins. *Physiol. Rev.* 91: 1123-1159. http://dx.doi.org/10.1152/physrev.00023.2010
- Nagy S, Poczai P, Cernák I, Gorji AM, et al. (2012). PICcale: an online program to calculate polymorphic information content for molecular genetic studies. *Biochem. Genet.* 50: 670-672. <u>http://dx.doi.org/10.1007/s10528-012-9509-1</u>
- Qiu Y, Lu H, Zhu JT, Chen XF, et al. (2014). Characterization of novel EST-SSR markers and their correlations with growth and nacreous secretion traits in the pearl oyster *Pinctada martensii* (Dunker). Aquaculture 420: S92-S97. <u>http://dx.doi.org/10.1016/j.aquaculture.2013.09.040</u>

Genetics and Molecular Research 15 (4): gmr15049054

- Ranjan S, Bhushan B, Panigrahi M, Kumar A, et al. (2015). Association and expression analysis of single nucleotide polymorphisms of partial tumor necrosis factor alpha gene with mastitis in crossbred cattle. *Anim. Biotechnol.* 26: 98-104. <u>http://dx.doi.org/10.1080/10495398.2014.929582</u>
- Seipp MT, Durtschi JD, Liew MA, Williams J, et al. (2007). Unlabeled oligonucleotides as internal temperature controls for genotyping by amplicon melting. J. Mol. Diagn. 9: 284-289. <u>http://dx.doi.org/10.2353/jmoldx.2007.060136</u>
- Shi Y, Wang S, Gu Z, Lv J, et al. (2014). High-density single nucleotide polymorphisms linkage and quantitative trait locus mapping of the pearl oyster, *Pinctada fucata martensii* Dunker. *Aquaculture* 434: 376-384. <u>http://dx.doi.org/10.1016/j.aquaculture.2014.08.044</u>
- Smith BL, Lu CP and Alvarado Bremer JR (2010). High-resolution melting analysis (HRMA): a highly sensitive inexpensive genotyping alternative for population studies. *Mol. Ecol. Resour.* 10: 193-196. <u>http://dx.doi.org/10.1111/</u> j.1755-0998.2009.02726.x
- Sun Y, Yu X and Tong J (2012). Polymorphisms in Myostatin Gene and associations with growth traits in the common carp (*Cyprinus carpio* L.). *Int. J. Mol. Sci.* 13: 14956-14961. <u>http://dx.doi.org/10.3390/ijms131114956</u>
- Wada KT and Komaru A (1996). Color and weight of pearls produced by grafting the mantle tissue from a selected population for white shell color of the Japanese pearl oyster *Pinctada fucata martensii* (Dunker). Aquaculture 142: 25-32. http://dx.doi.org/10.1016/0044-8486(95)01242-7
- Wang J, Qi H, Li L and Zhang G (2013). Two-step high-resolution melting method for SNP validation in the highly polymorphic Crassostrea gigas genome. Southwest Chin. J. Agr. Sci 26: 1699-1704.
- Wang J, Qi H, Li L, Que H, et al. (2015). Discovery and validation of genic single nucleotide polymorphisms in the Pacific oyster Crassostrea gigas. Mol. Ecol. Resour. 15: 123-135. <u>http://dx.doi.org/10.1111/1755-0998.12278</u>
- Wang X, Meng X, Song B, Qiu X, et al. (2010). SNPs in the myostatin gene of the mollusk *Chlamys farreri*: association with growth traits. *Comp. Biochem. Physiol. B Biochem. Mol. Biol.* 155: 327-330. <u>http://dx.doi.org/10.1016/j. cbpb.2009.12.001</u>
- Xu Z, Tang L, Li Y, Ge J, et al. (2016). Identification of SNPs in the 5'-flanking region and 3'-UTR of the MIH gene and their association with precocity of the Chinese mitten crab Eriocheir sinensis. Aquacult. Res. 47: 992-1000. <u>http:// dx.doi.org/10.1111/are.12559</u>
- Yeh FC, Yang R, Boyle TJ, Ye Z, et al. (2000). POPGENE 32, Microsoft windows based freeware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Canada.
- Yu DH and Chu KH (2006). Genetic variation in wild and cultured populations of the pearl oyster *Pinctada fucata* from southern China. *Aquaculture* 258: 220-227. http://dx.doi.org/10.1016/j.aquaculture.2006.03.024
- Zhang N, Ma Z, Zhang D, Guo H, et al. (2015). Characterization of 25 single nucleotide polymorphism markers in the pearl oyster *Pinctada martensii* (Dunker). *Conserv. Genet. Resour.* 7: 831-835. <u>http://dx.doi.org/10.1007/s12686-015-0503-x</u>

Genetics and Molecular Research 15 (4): gmr15049054