Association between the -174 G/C polymorphism of the interleukin-6 gene and myocardial infarction risk: a meta-analysis

J. Zhou¹, J. Feng² and X. Li³

¹Department of Pharmacy, Central Hospital of Zhumadian, Zhumadian, China
²Clinical Medicine Department of Traditional Chinese Medicine, Henan University of Traditional Chinese, Zhengzhou, China
³Interventional Ultrasound Department of the Chinese PLA General Hospital, Beijing, China

Corresponding author: J. Zhou
E-mail: jingzhou07@126.com

Received December 29, 2015
Accepted March 11, 2016
Published August 18, 2016
DOI http://dx.doi.org/10.4238/gmr.15038358

ABSTRACT. Numerous studies have evaluated the association between the -174 G/C polymorphism in the interleukin-6 gene (IL6) and myocardial infarction (MI) risk. However, the results from the published studies are inconclusive. The aim of this meta-analysis was to determine whether the IL6 -174 G/C polymorphism is associated with MI risk. A meta-analysis based on nine case-control studies was performed to address this issue. No significant associations between IL6 -174 G/C polymorphism and MI risk were observed in any of the genetic models (CC vs GG: OR = 1.18, 95%CI = 0.92-1.52; CG vs GG: OR = 1.09, 95%CI = 0.93-1.27; dominant model: OR = 1.11, 95%CI = 0.94-1.31; recessive model: OR = 1.10, 95%CI = 0.91-1.33). Furthermore, the subgroup analysis by ethnicity did not reveal
a significant association between the IL6 -174 G/C polymorphism and susceptibility to MI in Caucasians. In conclusion, the results indicate that the IL6 -174 G/C polymorphism does not contribute to MI risk.

Key words: -174 G/C polymorphism; Myocardial infarction; Interleukin-6

INTRODUCTION

Coronary heart disease, especially myocardial infarction (MI), is the most common cause of death globally (Mathers and Loncar, 2006). MI usually results from the rupture of an atherosclerotic plaque with thrombus formation and occlusion of the coronary vessel, resulting in an acute reduction of blood supply to a portion of the myocardium (Dutta et al., 2012). It is estimated that more than three million people annually experience an acute ST-elevation MI, and more than four million have a non-ST-elevation MI (White and Chew, 2008). MI is known to be a complex multifactorial disorder that is associated with environmental and genetic factors. A previous INTER-HEART study identified several risk factors for MI, including family history, body mass index, smoking habits, hypertension, diabetes mellitus, and serum lipid levels (Ounpuu et al., 2001). In addition, emerging evidence indicates that genetic factors may play a critical role in the development of MI (Singh et al., 2012).

Interleukin-6 (IL-6), one of the best studied pro-inflammatory cytokines, plays a central role in immune, inflammatory, and acute-phase responses, hematopoiesis, atherogenesis, and several endocrine and metabolic processes (Hirano, 1998). The IL6 gene, which has the chromosomal locus 7p21, spans 5 kb and contains four introns and five exons. The best characterized genetic variant of IL6 is a G-to-C substitution at position -174 in the promoter region of IL6 (-174 G/C or rs1800795), upstream of the transcription start site, which influences IL-6 levels in vitro and in vivo (Belluco et al., 2003; Jin et al., 2015; Xie et al., 2015; Yang et al., 2015). Because the -174 G/C polymorphism of IL6 increases IL-6 expression, it may be associated with susceptibility to MI.

Epidemiological studies have recently focused on the association between the IL6 -174 G/C polymorphism and MI risk. To test this important hypothesis, a number of observational studies conducted during the past decade have addressed the association between this polymorphism and the risk of MI. However, the results were inconsistent. This may in part be due to the small effect the polymorphism has on MI risk and the relatively small sample size of some published studies. Meta-analysis is a powerful tool for summarizing different studies. It can not only overcome the problem of small sample size and the inadequate statistical power of genetic studies of complex traits, but can also provide more reliable results than a single case-control study. Therefore, we performed a meta-analysis from all eligible studies to assess the association between the IL6 gene -174 G/C polymorphism and MI.

MATERIAL AND METHODS

Literature search

PubMed and Embase database searches were performed using the following search
terms: (“interleukin-6”, “IL-6” and “-174 G/C”) and (“myocardial infarction” and “MI”) and (“polymorphism”, “SNP”, “allele”, and “variant”). Additional studies were identified by a manual search of the references of original studies. Eligible studies in the current meta-analysis had to meet all the following criteria: 1) the publication must have been about a case-control study referring to the association between the IL6 -174 G/C polymorphism and MI; 2) the paper must have offered the sample size, distribution of alleles, genotypes, or other information that could help us infer the results; 3) when multiple publications reported the same or overlapping data, we used the most recent study or the one with the largest population; and 4) the publication language was confined to English.

Data extraction

Two investigators independently extracted the data and reached a consensus on all the items. For each study, the following characteristics were collected: last name of first author, year of publication, country of origin, ethnicity, numbers of genotyped cases and controls, and the counts of persons with different genotypes in cases and controls. Information on the Hardy-Weinberg equilibrium test (HWE) was also tracked or calculated if unavailable.

Statistical analysis

The strength of the association between the IL6 -174 G/C polymorphism and MI risk was measured by odds ratios (ORs) with 95% confidence intervals (95%CIs). The pooled estimates were performed under several genetic models, including homozygote comparison (CC vs GG), heterozygote comparison (CG vs GG), dominant model (CC+CG vs GG), and recessive model (CC vs CG+GG). Subgroup analysis was performed by ethnicity. Heterogeneity was investigated and measured using the I² statistic; I² > 50% indicated evidence of heterogeneity. When heterogeneity was present, the random-effect model was used to calculate the pooled OR, whereas the fixed-effect model was used in its absence (Lau et al., 1997). Sensitivity analyses were carried out by limiting the meta-analysis to studies conforming to HWE (P < 0.05 of HWE was considered significant). Publication bias was investigated using a Begg’s funnel plot (P < 0.05 was considered representative of statistically significant publication bias). All statistical tests for this meta-analysis were performed using the STATA software (version 12.0; Stata Corporation, College Station, TX, USA).

RESULTS

Study characteristics

A total of 855 potentially relevant publications up to November 2015 were systematically identified through PubMed and Embase databases. Based on our search criteria, 846 were excluded because they did not satisfy the inclusion criteria. A total of nine studies with 6778 cases and 5879 controls were included in the meta-analysis (Georges et al., 2001; Nauck et al., 2002; Bennet et al., 2003; Kelberman et al., 2004; Licastro et al., 2004; Lieb et al., 2004; Bennermo et al., 2011; Coker et al., 2011; Vakili et al., 2011). The characteristics of the selected studies are summarized in Figure 1. The year of publication of the included

Genetics and Molecular Research 15 (3): gmr.15038358
studies ranged from 2001 to 2011. The HWE test was conducted on genotype distribution of the controls in all included studies, and all studies satisfied the HWE except one (Vakili et al., 2011). In addition, there were eight studies of Europeans and one study of Asians. The main characteristics of the included studies are listed in Table 1.

Figure 1. Flow diagram of study search and selection process.

<table>
<thead>
<tr>
<th>Study included</th>
<th>Year</th>
<th>Area</th>
<th>Race</th>
<th>Cases/controls</th>
<th>Genotypes for cases</th>
<th>Genotypes for controls</th>
<th>HWE test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Georges</td>
<td>2001</td>
<td>France</td>
<td>Caucasian</td>
<td>1228/1344</td>
<td>GG 430 GG 680 GG 208</td>
<td>GG 462 GG 672 GG 210</td>
<td>0.18</td>
</tr>
<tr>
<td>Nauck</td>
<td>2002</td>
<td>Germany</td>
<td>Caucasian</td>
<td>1365/729</td>
<td>GG 436 GG 668 GG 261</td>
<td>GG 230 GG 355 GG 144</td>
<td>0.74</td>
</tr>
<tr>
<td>Bennet</td>
<td>2003</td>
<td>Sweden</td>
<td>Caucasian</td>
<td>1157/1300</td>
<td>GG 305 GG 577 GG 275</td>
<td>GG 398 GG 754 GG 348</td>
<td>0.80</td>
</tr>
<tr>
<td>Licastro</td>
<td>2004</td>
<td>Italy</td>
<td>Caucasian</td>
<td>138/132</td>
<td>GG 35 GG 88 GG 15</td>
<td>GG 46 GG 44 GG 7</td>
<td>0.42</td>
</tr>
<tr>
<td>Lieb</td>
<td>2004</td>
<td>Germany</td>
<td>Caucasian</td>
<td>1322/579</td>
<td>GG 451 GG 627 GG 244</td>
<td>GG 331 GG 499 GG 193</td>
<td>0.84</td>
</tr>
<tr>
<td>Kelberman</td>
<td>2004</td>
<td>Mixed</td>
<td>Caucasian</td>
<td>507/561</td>
<td>GG 227 GG 219 GG 61</td>
<td>GG 240 GG 240 GG 81</td>
<td>0.10</td>
</tr>
<tr>
<td>Bennermo</td>
<td>2011</td>
<td>Sweden</td>
<td>Caucasian</td>
<td>444/329</td>
<td>GG 119 GG 150 GG 87</td>
<td>GG 109 GG 176 GG 93</td>
<td>0.19</td>
</tr>
<tr>
<td>Coker</td>
<td>2011</td>
<td>Turkey</td>
<td>Caucasian</td>
<td>167/235</td>
<td>GG 102 GG 56 GG 9</td>
<td>GG 141 GG 81 GG 13</td>
<td>0.76</td>
</tr>
<tr>
<td>Vakili</td>
<td>2011</td>
<td>Iran</td>
<td>Asian</td>
<td>450/450</td>
<td>GG 155 GG 234 GG 63</td>
<td>GG 202 GG 229 GG 19</td>
<td>0.00</td>
</tr>
</tbody>
</table>

HWE = Hardy-Weinberg equilibrium.

Meta-analysis results

When all eligible studies were pooled into one dataset for the meta-analysis (Figure 2 and Table 2), we found no statistical association between the **IL6 -174 G/C polymorphism** and MI risk based on any of the four genetic models (CC vs GG: OR = 1.18, 95%CI = 0.92-1.52; CG vs GG: OR = 1.09, 95%CI = 0.93-1.27; dominant model: OR = 1.11, 95%CI = 0.94-1.31;
recessive model: OR = 1.10, 95% CI = 0.91-1.33). In the stratified analysis by ethnicity, there was a similar lack of association between this polymorphism and MI risk in Caucasians (CC vs GG: OR = 1.03, 95% CI = 0.92-1.14; CG vs GG: OR = 1.06, 95% CI = 0.90-1.25; dominant model: OR = 1.06, 95% CI = 0.90-1.25; recessive model: OR = 1.00, 95% CI = 0.92-1.10). Sensitivity analysis was performed by omission of one non-HWE study (Vakili et al., 2011) and the result was not altered, indicating that our results were statistically robust (Table 2).

Table 2. Summary of different comparative results.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Cases/controls</th>
<th>CC vs GG</th>
<th>P</th>
<th>F</th>
<th>CI vs GG</th>
<th>P</th>
<th>F</th>
<th>OR (95% CI)</th>
<th>P</th>
<th>F</th>
<th>OR (95% CI)</th>
<th>P</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethnicity</td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>8</td>
<td>6328/5429</td>
<td>1.03</td>
<td>0.01</td>
<td>0.92</td>
<td>0.01</td>
<td>0.93</td>
<td>0.01</td>
<td>1.06</td>
<td>0.02</td>
<td>0.92</td>
<td>0.01</td>
<td>0.93</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>8716/7819</td>
<td>1.18</td>
<td>0.01</td>
<td>0.92</td>
<td>0.01</td>
<td>0.93</td>
<td>0.01</td>
<td>1.00</td>
<td>0.00</td>
<td>0.91</td>
<td>0.00</td>
<td>0.93</td>
</tr>
</tbody>
</table>

N = number; F = inconsistency index; CI = confidence interval; OR = odds ratio; HWE = Hardy-Weinberg equilibrium.

Publication bias

We produced a Begg’s funnel plot to access the publication bias of all included studies. The shape of the funnel plot seemed symmetrical (Figure 3), suggesting that there was no obvious publication bias.

Figure 2. Forest plots of the association between the IL6 gene -174 G/C polymorphism and myocardial infarction risk.
DISCUSSION

MI is a multifactorial disease and its pathogenesis is not yet fully understood. Accumulated evidence indicates that MI is incontestably determined by a complex interaction of environmental and genetic factors. The -174 G/C polymorphism was studied in the promoter of the *IL6* gene, and the -174 C allele was found to be associated with lower plasma IL-6 concentration (Fishman et al., 1998). In the ECTIM study, Georges et al. (2001) first presented a significantly higher risk for MI in patients carrying the C allele. Subsequently, several studies, but not all, have confirmed a relationship between the *IL6* -174 G/C polymorphism and susceptibility to MI (Georges et al., 2001; Nauck et al., 2002; Bennet et al., 2003; Kelberman et al., 2004; Licastro et al., 2004; Lieb et al., 2004; Bennermo et al., 2011; Coker et al., 2011; Vakili et al., 2011). The current meta-analysis was performed to obtain a more adequate result by combining comparable studies, and increasing the sample size and statistical power (Wang et al., 2013).

In this study, we performed a meta-analysis to explore the association between the *IL6* -174 G/C polymorphism and MI risk among 12,657 subjects. Our meta-analysis did not show a significant association between the genotype and risk of MI. Because of the genetic and environmental differences pertaining to the subjects, we performed an ethnicity-specific subgroup analysis, and found no significant association in Caucasian populations. We could not perform stratified analysis in the Asian study by Vakili et al. (2011). Deviation of allelic distributions from HWE may have contributed to between-study heterogeneity in the sensitivity analysis (Luo et al., 2012); by limiting this meta-analysis to those studies that were consistent with HWE, we confirmed that the meta-analysis was realistic and believable. The effect of the *IL6* -174 G/C polymorphism might have a limited impact on MI. As with other diseases, the pathogenesis of MI is dependent on the synergistic reaction of multiple genes and
gene-environment interactions, and those relationships require further investigation in future studies.

Some limitations of this meta-analysis should be considered when interpreting the results. First, because of incomplete raw data or publication limitations, some relevant studies could not be included in our meta-analysis. Second, the random-effect model was used in this meta-analysis and the results must be interpreted with caution. Additionally, the genotype information stratified for the main confounding variables, such as age, gender, and exposure, was not available in the original papers, and the confounding factors might have caused unpredictable confounding bias.

In conclusion, this meta-analysis suggests that the -174 G/C polymorphism in the \textit{IL6} gene may not be associated with MI risk. Further evaluation of the influence of gene polymorphisms on MI will require well-designed studies with large sample sizes.

\textbf{Conflicts of interest}

The authors declare no conflict of interest.

\textbf{REFERENCES}

