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ABSTRACT. To date, research on laccases has mostly been focused
on plant and fungal laccases and their current use in biotechnological
applications. In contrast, little is known about laccases from plant
pathogens, although recent rapid progress in whole genome sequencing
of an increasing number of organisms has facilitated their identification
and ascertainment of their origins. In this study, a comparative
analysis was performed to elucidate the distribution of laccases
among bacteria, fungi, and oomycetes, and, through comparison
of their amino acids, to determine the relationships between them.
We retrieved the laccase genes for the 20 publicly available plant
pathogen genomes. From these, 125 laccase genes were identified in
total, including seven in bacterial genomes, 101 in fungal genomes,
and 17 in oomycete genomes. Most of the predicted protein models of
these genes shared typical fungal laccase characteristics, possessing
four conserved domains with one cysteine and ten histidine residues
at these domains. Phylogenetic analysis illustrated that laccases
from bacteria and oomycetes were grouped into two distinct clades,
whereas fungal laccases clustered in three main clades. These results
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provide the theoretical groundwork regarding the role of laccases in
plant pathogens and might be used to guide future research into these
enzymes.

Key words: Laccase; Plant pathogen; Bioinformatics; Bacteria; Fungi;
Oomycetes

INTRODUCTION

Laccases (EC No. 1.10.3.2) are widely distributed oxidoreductases that catalyze
the biological oxidation-reduction of polyphenols with a concomitant reduction of
molecular oxygen to water. They belong to the multi-copper oxidases (MCOs), which are
characterized by having four bound copper atoms (McGuirl and Dooley, 1999). These
copper atoms are classified as T1 (blue copper), T2, or T3 according to their spectroscopic
characteristics (Quintanar et al., 2007). Cu binding domains are highly conserved among
laccases. Numerous genes coding for laccase proteins have been cloned and characterized
from various sources (Zhao and Kwan, 1999; Litvintseva and Henson, 2002; Hoegger et al.,
2004; Baldrian, 2006; Kilaru et al., 2006; Courty et al., 2009; Lettera et al., 2010; Levasseur
et al., 2010; Feng and Li, 2012, 2013, 2014). Laccases have received much attention due
to their broad substrate specificity, making them useful in wood processing and the textile
industry (Rodriguez Couto and Toca Herrera, 2006).

Laccases are found in plants as well as in various microorganisms. Reports have
shown that laccases exist as a gene family in bacteria (Ausec et al., 2011), fungi (Hoegger
et al., 2004; Courty et al., 2009; Cazares-Garcia et al., 2013) and oomycetes (Feng and Li,
2012). Plant pathogenic fungi also produce many kinds of laccases. In Rhizoctonia solani,
a soil-born fungus infecting a wide range of crop plants, four laccase genes have been
identified (Wahleithner et al., 1996). In Gaeumannomyces graminis var. tritici, an important
root pathogen of cereals that causes take-all disease, three laccase genes have been identified
(Litvintseva and Henson, 2002). In Botrytis cinerea, a broad-host-range necrotrophic
pathogen, two laccase genes have been cloned and characterized (Schouten et al., 2002).
In Fusarium proliferatum, an opportunistic pathogen isolated from wheat, three laccase
genes have been isolated (Kwon and Anderson, 2001). Cafiero and Roncero (2008) isolated
and characterized six laccase genes, lccl, lcc2, lec3, lec4, lecS, and lec9, from the vascular
wilt fungus Fusarium oxysporum. In the chestnut blight fungus Cryphonectria parasitica,
the laccase gene lac3 (GenBank accession No. AY994151) consisting of 567 amino acids
was isolated (Chung et al., 2008). In oomycetes, which share morphological features with
some fungal plant pathogens but fall within the kingdom Stramenopila (Yoon et al., 2002), a
number of laccase-like genes have been identified in the genus Phytophthora. Four laccase-
like genes were identified in the P. capsici genome, whereas six were identified in the P. sojae
genome, and eight in the P. ramorum genome (Feng and Li, 2012). These three species are the
cause of blight and crown rot as well as of stem, leaf, and fruit lesions on many plants (Erwin
and Ribeiro, 1996). However, very few reports have been published to date that document
pathogenic bacterium laccase genes.

Studies have documented that laccases display diversity in biological function including
lignin degradation and fungal morphogenesis, and in industrial applications (Litvintseva and
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Henson, 2002; Baldrian, 2006). However, in the last decade some evidence has suggested that
this enzyme plays different roles in fungal pathogenesis. In the animal pathogen Cryptococcus
neoformans, laccases are involved in melanin synthesis (Zhu and Williamson, 2004) and are
thus considered as important virulence factors (Zhu et al., 2001). Significant reductions in
laccase activities have been associated with hypovirulence in virus-infected strains of the
chestnut blight fungus C. parasitica (Rigling and Van Alfen, 1991, 1993; Chung et al., 2008),
whereas the phytopathogenic fungus F. oxysporum possesses two intracellular laccases, Lecl
and Lce3, which might be involved in the protection of the fungus against oxidative stress and
toxic compounds (Cafiero and Roncero, 2008). However, although laccase isoenzymes are
encoded by gene families in many pathogenic fungi and oomycete species, to our knowledge
little information about their function has been elucidated.

As more genomes are sequenced and the genes annotated therein, it has become
suitable to perform bioinformatic analysis among different species. Genome-wide comparisons
among these pathogens will enable the comparative analyses of functional genes and will
reveal insights into the processes of pathogenesis and biotrophy.

This study was the first to evaluate plant pathogen laccases at the level of 1) the
distribution of laccase genes within bacteria, fungi, and oomycetes; 2) the diversity of the
genes for these species; 3) the structural characteristics of their coded proteins; and 4) the
phylogenetic relationships of the putative laccases. This approach provided the theoretical
ground for new hypotheses about the roles of laccases in plant pathogens and might guide the
future research of these interesting and biotechnologically important enzymes.

MATERIAL AND METHODS
Data sets

We downloaded the 20 pathogen genomes reported available from known websites
[the Broad Institute and the Department of Energy (DOE) Joint Genome Institute]. Five
bacterial genomes were obtained from the Broad Institute (http://www.broadinstitute.org/)
including Erwinia amylovora CFBP1430, Xanthomonas oryzae pv. oryzae KACC 10331, X.
oryzae pv. oryzicola BLS256, Pseudomonas syringae DC3000, and P. syringae pv. syringae
B728a. We also obtained 11 fungal genomes from the Broad Institute as well: C. parasitica,
Fusarium graminearum PH-1, F. oxysporum f. sp lycopersici 4287, F. verticillioides 7600-3,
Gibberella zeae PH-1, Magnaporthe oryzae 70-15, Puccinia graminis var. tritici, Ustilago
maydis, Rhizopus oryzae, Sclerotinia sclerotiorum, and Verticillium dahliae VdLs.17.
Databases of pathogenic oomycete genomes included four available species from the genus
Phytophthora (P. sojae genome sequence assembly database V3.0, P. capsici genome
sequence assembly database V1.1, P. ramorum genome sequence assembly database V1.1,
and P. parasitica) that were downloaded from the DOE Joint Genome Institute (http://
genome.jgi.doe.gov/).

Genome analysis

From the National Center for Biotechnology Information (NCBI) GenBank database,
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we obtained the sequences of various multi-copper oxidases, including those of Cucurbita
maxima (GenBank accession No. BAA02123), Melanocarpus albomyces (GenBank accession
No. CAEO00180), Myrothecium verrucaria (GenBank accession No. BAA09528), and
Saccharomyces cerevisiae (GenBank accession No. AAA64929), which were used as queries
to search for laccase genes in the 20 pathogen genomes. Various members of the MCO family
were used to assure the identification of all possible laccases in the genomes analyzed based
on the identity of copper binding sites. In addition, only the gene and amino acid sequences
from crystallized proteins, for which there is no doubt regarding their identity, were used in
this analysis. Sequences were selected for the presence of the four preserved copper binding
motifs characteristic of all MCOs.

Sequence analysis

The protein sequences of predicted laccase genes were submitted to SignalP v3.0
(http://www.cbs.dtu.dk/services/SignalP/) (Bendtsen et al., 2004) for secreted signal peptide
prediction, whereas NetNGlyc 1.0 (http://www.cbs.dtu.dk/services/NetNGlyc/) was used
to determine the sites of N-glycosylation (Asn-XXX-Ser/Thr). Protein domain and motif
analysis was conducted using the NCBI conserved domain database (http://www.ncbi.nlm.
nih.gov/Structure/cdd/cdd.shtml) and the SMART software (http://smart.embl-heidelberg.de/)
(Marchler-Bauer and Bryant, 2004; Marchler-Bauer et al., 2009). Multiple alignment of all
retrieved sequences was performed using ClustalX (Larkin et al., 2007) to identify and remove
duplicate entries.

Phylogenetic analysis

To generate phylogenetic tree, all predicted laccase genes from the different pathogens
were used, as shown in Tables 1-3. Multiple alignments of these sequences were performed
using Clustal X (2.0). Phylogenetic trees were generated by neighbor-joining, as implemented
in PAUP* 4.0 Beta (Sinauer Associates, Sunderland, MA, USA) with the default parameters.
Nodal support of the trees was estimated by bootstrapping (Felsenstein, 1985) with 1000
pseudo-replicate data sets.

RESULTS
Identification of laccase genes in plant pathogen genomes

Four laccase sequences, including those of C. maxima (GenBank accession No.
BAAO02123), M. albomyces (GenBank accession No. CAE00180), M. verrucaria (GenBank
accession No. BAA09528), and S. cerevisiae (GenBank accession No. AAA64929) were
used to search the 20 genomes using the TBLASTn program and an expected (E) value cut-
off < 10-°. A total of 125 predicted gene models were retrieved under these conditions, as
shown in Tables 1-3. In bacteria, seven laccase genes were searched as shown in Table 1;
in fungi, 101 laccase genes occurred, which are displayed in Table 2; and in oomycetes, 17
paralogous genes were retrieved and are shown in Table 3.
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Table 1. Summary of laccase genes in the genomes of bacterial plant pathogens.

Species name Genome position®  Designated gene name  Protein length ~ SignalP length®  N-glycosylation
Asn-X-Ser/Thr
Erwina amylovora 292489271 ealacl 536 nd nd
292486950 ealac2 474 nd nd
Xanthomonas oryzae pv. oryzae 58580379 xplacl 638 nd nd
Xanthomonas oryzae pv. oryzicola 384420792 xplac2 622 nd nd
Pseudomonas syringae pv. syringae 66044816 pseulacl 592 nd nd
66044740 pseulac2 606 nd nd
66044514 pseulac3 457 nd nd

“The genome position refers to the laccase gene position in the plant pathogenic bacterium genome sequence
assembly database (Erwinia amylovora CFBP1430, Xanthomonas oryzae pv. oryzae KACC 10331, Xanthomonas
oryzae pv. oryzicola BLS256, and Pseudomonas syringae pv. syringae B728a); bsignal peptide lengths were
predicted using SignalPv3.0 (http://www.cbs.dtu.dk/services/SignalP/); “denotes the location of N-glycosylation in
amino acid sequences from laccases; N-glycosylation sites were predicted using the NetNGlyc 1.0 Server (http:/
www.cbs.dtu.dk/services/NetNGlyc); nd, not detected.

Table 1 shows the search results in the available pathogenic bacterial genomes;
however, only four genomes contained laccases, as no hits were found in the P. syringae
DC3000 genome database (data not shown). In E. amylovora, two laccase genes were
identified and were designated ealacl and 2; in X. oryzae pv. oryzae and X. oryzae pv.
oryzicola, two laccase genes occurred and were named xplacl and 2, respectively; and
in P. syringae pv. syringae, three paralogous genes were retrieved and were designated
pseulac1-3.

The occurrence of laccase in pathogenic fungi is shown in Table 2. In C.
parasitica, which causes chestnut blight, 16 laccase genes were found and were named
cplacl-16. Fusarium is a large genus of filamentous fungi widely distributed in soil and
in association with plants. The genus includes a number of economically important plant
pathogenic species, e.g., F. graminearum commonly infects barley in humid conditions.
Results showed that 11 laccase members appeared in this genome, which were named
fglac1-11. Additionally, in F. oxysporum f. sp lycopersici, a total of 14 paralogous genes
were retrieved and were designated folacl-14. In F verticillioides, a fungus that is one of
the most prevalent molds on harvested maize throughout the world, 14 genes were found
and named fvlac1-14. In G. zeae, which causes a devastating disease on wheat and barley,
four genes were found (gzlacl-4). In M. oryzae, an important pathogen that causes blast
disease or blight disease on agriculturally important cereals including rice, wheat, rye,
barley, and pearl millet, a total of 13 laccases were identified. In P. graminis var. tritici,
the causal agents of wheat and barley stem rust (black rust), eight genes were identified.
In U. maydis, a basidiomycete fungal pathogen that induces tumors on maize and teosinte,
six genes were found (umlacl-6). In R. oryzae, a common saprobic fungus on plants, four
genes were found (rdlac1-c4). S. sclerotiorum, which is among the world’s most successful
and omnivorous fungal plant pathogens and exhibits a host range of greater than 400 plant
species, contained seven laccase genes according to our analysis (sslac1-7). In V. dahliae,
one of the causal agents of vascular wilt in numerous economically important plants that
causes wilting of all or only parts of the host including olive and maple trees, cotton,
tomatoes and potatoes, and also ornamentals, four laccase genes were retrieved (vdlacl-
vdlac4).
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Oomycetes form a distinct phylogenetic lineage of fungus-like eukaryotic
microorganisms that cause devastating diseases such as late blight of potato and sudden oak
death. Many species of Phytophthora are plant pathogens of considerable economic importance.
In this study, the four available genomes of the genera Phytophthora were analyzed. In P,
capsici, a total of three genes were identified; in P. sojae, four were identified; and P. ramorum
and P. parasitica presented six and five genes, respectively (Table 3).

Sequence analysis

Analysis of the coding sequences using the NCBI conserved domain database (CDD)
server verified the Cu-oxidase domain distribution among the 125 predicted proteins (data
not shown). Only one candidate was selected from each genome to represent the Cu-oxidase
domain distributions. Line diagrams of these laccase sequences are shown in Figure 1.
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Figure 1. Predicted topology of laccase proteins. Protein domains are indicated as follows: blue, predicted
signal peptide; red, Cu-oxidase-3 domain; yellow, Cu-oxidase domain; and green, Cu-oxidase-2 domain. Line
diagrams are drawn to scale. The origins of the laccases are, respectively: xplacl, Xanthomonas oryzae; pseulacl,
Pseudomonas syringae; cplacl, Cryphonectria parasitica; fglacl, Fusarium graminearum PH-1; folacl, Fusarium
oxysporum f. sp lycopersici 4287, fvlacl, Fusarium verticillioides 7600-3; gzlacl, Gibberella zeae PH-1; molacl,
Magnaporthe oryzae 70-15; pglacl, Puccinia graminis var. tritici; rdlacl, Rhizopus oryzae; sslacl, Sclerotinia
sclerotiorum; umlacl, Ustilago maydis; vdlacl, Verticillium dahliae; pclacl, Phytophthora capsici V1.01; pslacl,
Phytophthora sojae V3.0, prlacl, Phytophthora ramorum V1.1; and pplacl, Phytophthora parasitica.
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Laccase proteins from bacteria included approximately 457 to 638 amino acids (Table
1). Interestingly, none of these laccases had a signal peptide, which suggested that they were
intracellular laccases. The putative laccases from fungi contained 488 to 1280 amino acids,
and 114/121 laccase genes had 500 to 700 amino acids (Table 2). Only pglac2 from P. graminis
and umlac6 from U. maydis showed very long sequences with 1160 and 1289 amino acids,
respectively. In particular, certain pathogenic fungi were considered to secrete extracellular
laccases and also contain intracellular laccases according to our analyses using the SignalP v3.0
software. The vast majority of these putative laccases (80/114) contained a predicted signal
peptide; their putative monobasic propeptide cleavage sites were located between amino acid
residues 16 and 29. In addition, these 80 laccase genes showed numerous N-glycosylation sites
that varied among different species. Analysis of the amino acid sequences of the 17 putative
laccases identified in oomycytes showed that their lengths were similar to the laccases of fungi,
and most members (16/17) contained 500 to 700 amino acids. We also determined whether
the protein sequences of the 17 Phytophthora laccases possessed secretory leader peptides
using the SignalP v3.0 software. Following the parameter Markov-model (HMM) and signalP
NN Mean Score, most of the members (14/17) contained a signal peptide and corresponding
N-glycosylation sites. For these 14 laccases, their putative monobasic propeptide cleavage
sites were found to be present between amino acid residues 19 and 23, as shown in Table 3.

Previously, four conservative regions have been characterized that are specific for
all laccases (Kumar et al., 2003; Claus, 2004). One cysteine and ten histidine residues form
a ligand environment of copper ions at the laccase active site and are present in these four
conserved amino acid sequence domains. In order to examine whether these residues are
conserved among the 125 laccases identified in this study, we conducted protein sequence
alignments and compared amino acid sequences at the key sites, as shown in Figures 2 and 3.
The data showed that most of the proteins had one cysteine and ten histidine residues at the
conserved positions. These sequences present the strictly conserved residues: His79, His81,
His123, His125, His420, His423, His425, His483, Cys484, His485, and His489 (numbered
according to the cplacl sequence). In addition, the following residues with more than 90%
occurrence were found: Pro40, Gly41, Asn49, Pro54, Pro56, Gly62, Asp63, Asn70, Gly82,
Asp91, Gly92, GIn98, 1le101, Pro103, Tryl09, Gly117, Trp120, Try121, Pro421, Gly426,
Pro453, Argd57, Asp458, Asnd75, Pro476, Gly477, Trp479, and Gly493. Most of these
highly conserved and conservative residues are involved in the four copper-binding conserved
domains of the typical laccase: regions I and I, as shown in Figure 2, and regions III and IV
as shown in Figure 3; these regions correspond to regions L1-L4 as designated by Kumar et al.
(2003). Of the putative proteins, 108/125 (86%) possessed the four copper-binding conserved
domains characteristic of typical laccases. Regions I (HxHG), II (HSH), III (HPxHxHG), and
IV (HCHxxH) are indicted in Figures 2 and 3. However, some amino acid residues differed
from the consensus. For example, the second segment (HSH) was conserved in 81/108
sequences, whereas in the other sequences Ser was replaced by Ala, Gly, Pro, or Thr.

We also identified 17 sequences that contained incomplete typical laccase domains.
In bacteria, ealac2 from E. amylovora only exhibited one conserved domain (region I) as
shown in Figure 2, while pseulacl and 2 from P. syringae did not possess region III, and the
latter also lacked region IV. In fungi, a total of 13 genes contained two or three conserved
domains, as shown in Figures 2 and 3; three members lacked regions III and IV (cplaclé,
pglac4, and vdlac4); while the rest lacked region I (folac13, folac14, fvlac13, gzlac3, pglac7,
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and vdlacl), region II (fglac11 and pglac4), or region IV (folac12 and molac5). In oomycetes,
most putative genes presented intact conserved domains, and only one gene, pplac2 from P,
parasitica, lacked region 1.
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Figure 2. Protein sequence alignment of the 125 predicted laccase genes from plant pathogen genomes. The conserved
copper-binding domains of typical laccase regions I and II are marked above the sequences, and conserved motifs
and key functional histidine residues are indicated. All the sequences presented agree with those used in Tables 1-3.

Genetics and Molecular Research 14 (4): 14019-14036 (2015) ©FUNPEC-RP www.funpecrp.com.br



Bioinformatics of laccase genes from plant pathogen genomes 14031

RegionlIl RegionlV
g

ealacl
ealacz
pseulacl
pseulac2
pseulac3
xplacl

bacteria

ARKLR ISVPIIEGILPDDPAN
Tk SQLINTFVESPLALOET oo

PD.
ERASEIPD.

G . . .HLYIQFDAG.
+ YAVKGVPHHTAGWRAWRIRITE

REDEIPS .

KGKF

o
S
»
8
2
HSuSEH

- GLAMQVLERQGDANEL. . :30

-y
DIEDP... 502

- 648
VREDEIPS. .. 602

£vlacl0
fvlacil

osg<sn

fvlac13
fvlacia
gzlacl

LIATFVEDPLALOAS . .

gsQ:

e . .NEAHF. . .ENFT}
WNYSSVEEAIA.AE. . PHNFDLDT}
5 AN

5 YLYVS
- YAVKGVPHHTAGWRAWRIRITE
: SAW:

LEDQIPL. .. §
PDRFQKR. . 544

IPAGGN 583

ycetes

B T A RIS

pslaca

Figure 3. Protein sequence alignment of the 125 predicted laccase genes from plant pathogen genomes (continued).
The conserved copper-binding domains of typical laccase: regions Il and IV are marked above the sequences, and
conserved motifs and key functional histidine residues are indicated. All the sequences presented agree with those
used in Tables 1-3.
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Phylogeny of laccase genes from plant pathogens

To examine the relationships between the putative laccase genes from various sources, we
constructed a phylogenetic tree on the basis of multiple-sequence alignment of the 125 putative
laccase genes (as shown in Tables 1-3). The phylogenetic tree (Figure 4) shows the relationships
among the selected 125 laccases. The laccases of bacteria, fungi, and oomycetes were separated into
distinct groups, while the fungal genes separated into three main clades marked as fungi I, 11, and I11.
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Figure 4. Phylogenetic tree constructed using PAUP 4.0 based on the protein sequences of each gene. The numbers
at the nodes represent the percentage of their occurrence in 10,000 bootstrap replicates and the scale bar shows
the number of amino acid differences per site. The amino acids of 125 predicted laccase genes originated from 4
bacterial species, 4 Phytophthora species, and 11 fungi species. All the sequences used agree with those in Tables
1-3.
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The bacterial enzymes formed their own clade and also included the oomycete laccase
pplac2 from P. parasitica and the fungal laccase vdlac4 from V. dahliae. The oomycete laccases
were also well clustered into a clade. It should be pointed out that fungus clades I, II, and I1I
were less compact since these were formed by more clusters that were not rooted in a single
node (Figure 4).

DISCUSSION

In this study, we present as complete as is currently possible the structural and
phylogenetic picture of plant pathogen laccases, based on analysis of putative amino acid
sequences in the 20 publicly available plant pathogenic genomes by sequence alignment and
construction of a phylogenetic tree. We identified 125 laccase genes in total, including seven in
bacterial genomes, 17 in oomycete genomes, and 101 in fungal genomes. Most of the predicted
protein models shared typical fungal laccase characteristics, possessing three conserved
positions with one cysteine and ten histidine residues at these positions. Phylogenetic analysis
illustrated that laccases from bacteria and oomycetes clustered efficiently into two different
clades, while fungal laccases formed less compact clusters.

The distributions of the laccase genes of different origins varied considerably. In
this study, fungi were found to contain a larger number of laccases than did oomycetes and
bacteria. Among the species that were characterized as having a large number of laccase genes
were C. parasitica, Fusarium, and M. oryzae, with 16, 39, and 13 genes, respectively. In other
fungi, 9 genes each were identified in the filamentous ascomycetes Podospora anserina and
Sordaria macrospora (Poggeler, 2011), Aspergillus niger contained 6 (Ramos et al., 2011),
and Chaetomium globosum had 4 (Hoegger et al., 2006). In oomycetes, candidate species of
Phytophthora had five laccase genes on average. However, bacterial species possessed a low
number of laccase genes, having only one to three genes in each genome. It should be pointed
out that no laccase was retrieved in P. syringae dc3000, although three genes were found in P
syringae b728a, which is of the same genera. There is now increasing information regarding
the diversity and distribution of laccases within bacteria including species living in extreme
habitats (Ausec et al., 2011). Therefore, the roles of many laccases found in plant pathogens can
be inferred in terms of protein structure as well as physiological function including substrate
utilization, pigment formation, and stress resistance. It has been documented that some laccases
from fungi are involved in morphogenesis and pathogenesis, as described earlier. Furthermore,
the possibility that bacterial laccases play a role in biopolymer degradation has been suggested
as well (Ahmad et al., 2010). Overall, however, very little is known directly about laccases
from plant pathogens. It is therefore important to experimentally evaluate the functions of these
putative proteins.

Sequence alignment of putative laccases showed that the copper-binding domains
were highly conserved in most genes, even when the remaining amino acid sequences were
of low similarity. The conserved copper-coordination sites had the sequences HxHG, HSH,
HPxHxHG, and HCxxH localized near the N- and C-termini, which was consistent with those
of fungi (Fan et al., 2011). However, these conserved domains were not apparent in bacterial
sequences. It was interesting to note that all of the laccase genes from oomycetes presented
highly conserved domains in accordance with those of fungi. Thus, laccases from bacteria
might have several prosperities that are not characteristic of the fungal or oomycete enzymes.
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In addition, the laccases from bacteria had no obvious signal peptides indicating that
they were intracellular, which was consistent with current knowledge (Sharma et al., 2007).
In contrast, most enzymes from fungi and oomycetes exhibited signal peptides, and were
therefore considered to be extracellular enzymes. To our knowledge, the majority of known
fungal laccases have extracellular activity, although intracellular laccases have also been
identified (Baldrian, 2006). In fungi, the functions of extracellular laccases are related to the
degradation of lignocellulose material, recycling of organic material, reduction of oxidative
stress, and pathogenesis toward plants and animals, and have been extensively studied
(Schouten et al., 2002; Baldrian, 2006). Of the 101 fungal laccases identified in this study,
it was determined that 77 corresponded to extracellular laccases, whereas the other 34 were
intracellular proteins (Table 2). Of the 17 genes identified in oomycetes, 82.4% (14/17) related
to extracellular activity (Table 3). On the other hand, according to the predictions generated
in this study, glycosylation would usually be expected to occur in the extracellular enzymes,
which suggested that these laccases were likely glycoproteins. The average glycosylation of
laccases is usually between 10 and 25% (Baldrian, 2006). Glycosylation influences enzyme
secretion, and it has been suggested to play an important role in catalytic center stabilization,
protection against hydrolysis, copper retention, and laccase thermal stability (Vite-Vallejo et
al., 2009). Taken together, these results suggest that it would be important to experimentally
evaluate the functions of the laccase gene families identified among these plant pathogens.

Phylogenetic analysis showed that the laccases from oomycetes and bacteria clustered
into two distinct clades, which were well separated from the fungal laccases, while fungal
laccases were included in three main clades. The phylogenetic relationships between these
isoenzymes suggest structural similarities in terms of their regions and amino acids. It should
be pointed out that all enzymes included in the tree were retrieved from genomes according to
the same criteria, as shown in Tables 1-3. Because of this approach, the genes might represent
different members of the MCO family. Therefore, it will be important to consider this aspect
to generate a better definition of laccases in order to build more valid phylogenetic patterns
that will provide a clearer idea of the evolutionary process of this enzyme and its functions
among distinct species.
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