Novel truncating mutations in the CFTR gene causing a severe form of cystic fibrosis in Italian patients

S. Lenarduzzi¹, M. Morgutti¹, S. Crovella¹², A. Coiana³ and M.C. Rosatelli³

¹Institute for Maternal and Child Health “Burlo Garofolo”, Trieste, Italy
²Department of Health, Medical and Surgical Sciences, University of Trieste, Trieste, Italy
³Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy

Corresponding author: S. Lenarduzzi
E-mail: stefania.lenarduzzi@burlo.trieste.it

ABSTRACT. Cystic fibrosis (CF) is a common recessive genetic disease caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. More than 1800 different mutations have been described to date. Here, we report 3 novel mutations in CFTR in 3 Italian CF patients. To detect and identify 36 frequent mutations in Caucasians, we used the INNO-LiPA CFTR19 and INNO-LiPA CFTR17+Tn Update kits (Innogenetics; Ghent, Belgium). Our first analysis did not reveal both of the responsible mutations; thus, direct sequencing of the CFTR gene coding region was performed. The 3 patients were compound heterozygous. In one allele, the F508del (c.1521_1523delCTT, p.PHE508del) mutation in exon 11 was observed in each case. For the second allele, in patient No.1, direct sequencing revealed an 11-base pair deletion (GAGGCGATACT) in exon 14 (c.2236_2246del; p.Glu746Alafs*29). In patient No. 2,
Introdução

Cystic fibrosis (CF) é a doença genética recessiva mais comum na população caucasiana, com uma prevalência de 1 em 2500 recém-nascidos (Davis et al., 1996). É uma doença multifacetada causada por mutações no gene que codifica o regulador do canal de fluxo do cloreto (CFTR), um canal de cloreto predominante em membranas dos epitélios que participam do transporte regulado de sal e água através das camadas epiteliais (Kirk, 2000).

Mais de 1800 mutações foram descritas em CFTR, que foram classificadas em 5 classes baseadas em alterações moleculares na proteína (Bienvenu, 1997). O alinhamento de proteína causa secreções mucose densas e consequentemente expressão clínica envolvendo os sistemas gastrointestinal e pulmonar, pâncreas, fígado e trato reprodutivo.

No presente estudo, identificamos 3 mutações novas em 3 pacientes com fibrose cística.

Materiais e Métodos

Os pacientes foram recrutados no Centro de Fibrose Cística Regional do Instituto Materno-Infantil, IRCCS “Burlo Garofolo”, Trieste.

Diagnóstico foi feito após o cumprimento de 2 testes de suor positivos de acordo com Gibson e Cooke (1959).

Pacientes

Paciente 1

O primeiro paciente (feminino) foi diagnosticado aos 4 meses de idade. Ele apresentava características de CF, incluindo insuficiência pancreática, distúrbios gastrointestinais e respiratórios, crescimento fraco, e níveis altos de cloreto (71 mM) na suor. Sua relação cloreto/sódio era superior a 1.0 (1.3).

Paciente 2

O segundo paciente (feminino) foi diagnosticado ao nascer. Ele apresentava insuficiência pancreática, distúrbios gastrointestinais, crescimento fraco, e níveis altos de cloreto (94 mM) na suor. Sua relação cloreto/sódio era 1.2.
Patient 3

The third patient (female) was diagnosed at 6 months of age. She presented electrolyte depletion (hypochloremia, hyponatraemia) and dehydration, pancreatic insufficiency, gastrointestinal disorder, poor growth, and borderline chloride levels (65 mM). Her chloride/sodium ratio was 1.5.

DNA extraction

Genomic DNA samples of the patients were extracted from peripheral blood using the QIAamp DNA Blood Mini Kit (Qiagen; Hilden, Germany).

CFTR genotyping

First-level analysis

To detect and identify 36 frequent mutations in Caucasians, we used the INNO-LiPA CFTR19 and INNO-LiPA CFTR17+Tn Update kits (Innogenetics; Ghent, Belgium). This is a multiparameter line probe assay based on the reverse hybridization principle for the simultaneous detection and identification of 36 CF-related mutations and their wild-type sequences in human whole blood.

Second-level analysis

Because the first level of analysis did not reveal both mutations responsible for CF disease, direct sequencing of the CFTR gene coding region (including the 27 exons and the exon-intron boundaries) was performed.

Sequencing analysis was carried out using the Big Dye Terminator cycle sequencing kit (Applied Biosystems; Foster City, CA, USA) and an ABI PRISM 3130 (Applied Biosystems) genetic analyzer.

Mutation nomenclature was defined according to international recommendations (www.hgvs.org/mutnomen). Nucleotide (cDNA) numbering used +1 as the A in the ATG codon for the reference sequence GenBank NM_000492.2.

RESULTS

First-level analysis

All 3 patients were heterozygous for an F508del (c.1521_1523delCTT, p.PHE508del) mutation in exon 11, but the second mutation was not detected.

Direct sequencing

Patient No. 1

Direct sequencing of all exons and their flanking regions revealed an 11-base pair deletion (GAGCGATACGT) in exon 14 (c.2236_2246del; p.Glu746Alafs*29). This deletion
introduced a stop codon (TAA) 29 amino acids downstream. The new mutation was of paternal origin (Figure 1).

![Figure 1. Electropherogram of the mutation in Patient No. 1.](image1)

Patient No. 2

Direct sequencing of all exons and their flanking regions revealed a nonsense mutation at nucleotide 3892 (c.3892G>T) in exon 24, which changed a glycine residue to a stop codon (TGA) at amino acid 1298 (Gly1298*). The new mutation was of maternal origin (Figure 2).

![Figure 2. Electropherogram of the mutation in Patient No. 2.](image2)

Patient No. 3

Direct sequencing of all exons and their flanking regions revealed a deletion of a cytosine in exon 27 (c.4296delC; p.Asn1432Lysfs*16). This deletion predicted a new stop codon (TGA) 16 amino acids downstream. The new mutation was of paternal origin (Figure 3).

![Figure 3. Electropherogram of the mutation in Patient No. 3.](image3)
DISCUSSION

CFTR is a chloride channel encoded by a gene that is defective in CF patients. CFTR is predominately localized on the lumen-facing (apical) membranes of epithelial cells, participating in regulated transport of salt and water across epithelial tissues (Gibson and Cooke, 1959).

The CFTR gene is located on the long (q) arm of chromosome 7 at position 31.2.

CFTR mutations can be divided into 5 classes based on molecular alteration at the protein level: the first class includes mutations such as the introduction of a premature stop codon, causing a defect in the production of functional CFTR protein. These are responsible for the lack of synthesis of the protein. Second-class mutations include those causing a block in protein processing. The third and fourth classes include mutations that cause either a block in the regulation or an altered conductance of the CFTR protein. Finally, the fifth class of mutations causes reduced protein synthesis (Naren and Kirk, 2000).

The c.2236_2246delGAGGCGATACT mutation in the CFTR R-domain predicts a new stop codon (TAA) 29 amino acids downstream. The deletion lies in a region of a dele
tional hotspot. Interestingly, 2 other deletions have been independently described in two previous reports, including 2372del8 (c.2240_2247delCGATACTG; p.Ile748Serfs*28) (Zielenksi and Tsui, 1995) and 2380_2387del (c.2248_2255del; p.Pro750Glnfs*26) (Chevalier-Porst et al., 1993), which are located in the same DNA tract. These deletion events may be sustained by the presence of a short inverted repeat that causes either replication or recombination errors.

The c.3892G>T (p.Gly1298*) mutation is a nonsense mutation that introduces a new stop codon at the amino acid 1298. This mutation is located in CFTR nucleotide binding domain 2 and causes a severe form of CF as synthesis of the wild-type protein is suppressed.

The c.4296delC mutation creates a stop codon 16 amino acids downstream, leading to deletion of 124 C-terminus amino acids from the CFTR protein, including the TRL-COOH domain. As described for the c.4296_4297insGA and p.Ser1435Glyfs*14 mutations (Claus
tres et al., 2008), this highly conserved domain matches the binding consensus domain of the Na⁺/H⁺ exchanger regulatory factor. This cytoplasmic phosphoprotein may play an important regulatory role in CFTR function (Jézéquel et al., 2000). Previous studies (Wang et al., 1998; Mickle et al., 1998; Moyer et al., 1999) found that a nonsense mutation in exon 24 encoded a truncated version of the CFTR protein, which was missing the last 26 amino acids and became mispolarized to the lateral membrane of the epithelia.

These 3 novel mutations predicted a truncated protein and, as a consequence, a non-functional polypeptide that can be considered as first-class mutations. The mutations identified in this study were severe mutations associated with pancreatic insufficiency.

ACKNOWLEDGMENTS

Research supported by a grant (#RC37/07) from IRCCS Burlo Garofolo (Trieste, Italy).

REFERENCES

Novel mutations in CFTR

