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ABSTRACT. Amblyomma aureolatum (Pallas) is the main vector of the 
bacterium Rickettsia rickettsii, the etiological agent of Brazilian spotted 
fever. This disease is the most lethal human spotted fever rickettsiosis in 
the world. Microsatellite loci were isolated from a dinucleotide-enriched 
library produced from A. aureolatum sampled in Southeastern Brazil. Eight 
polymorphic microsatellites were further characterized among 38 individuals 
sampled from São Paulo metropolitan region. The number of observed 
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alleles ranged from 2 to 9, observed heterozygosity was 0.184-0.647, and 
expected heterozygosity was 0.251-0.747. Cross-species amplifications 
suggested that these loci will be useful for other Amblyomma species.

Key words: Amblyomma aureolatum; Enriched library; Microsatellites; 
Ticks

INTRODUCTION

The tick Amblyomma aureolatum (Pallas) is an important vector of the bacterium 
Rickettsia rickettsii, the etiological agent of Brazilian spotted fever (BSF). BSF is the most 
lethal human spotted fever rickettsiosis worldwide (Pinter and Labruna, 2006). A. aureolatum 
has been found to be restricted to the Neotropical region, covering the eastern area of South 
America from Uruguay to Surinam, including Northeastern Argentina, Eastern Paraguay, 
Southern and Southeastern Brazil, and French Guiana (Guglielmone et al., 2003). This tick 
species is typical of the Atlantic rainforest, where optimal conditions including high humidity 
and cool temperatures are present throughout the year (Pinter et al., 2004).

Individuals of the adult stage of A. aureolatum feed chiefly on carnivore species, while im-
mature ticks (larvae and nymphs) prefer to feed on passerine birds and a few rodent species (Gug-
lielmone et al., 2003). Humans are accidental hosts that get infected when bitten by R. rickettsii-
infected adult ticks. However, many questions remain regarding the epidemiology of this disease.

Understanding the population genetics of A. aureolatum may provide insight into 
many ecological features of this tick, including reproductive modes and/or strategies of dis-
persal, population size, and structure, and may contribute to a better understanding of disease 
ecology (de Meeûs et al., 2007; McCoy, 2008), such as BSF. However, the genetic diversity 
and population structure of this important tick vector remain unknown because of the absence 
of appropriate genetic markers. In this study, we isolated and characterized 8 polymorphic mi-
crosatellite markers in A. aureolatum and analyzed the population structure and dispersal pat-
terns of this organism. Furthermore, microsatellite markers developed for A. aureolatum were 
tested for 2 additional important Brazilian tick species: Amblyomma cajennense (F.), another 
important vector of R. rickettsii (Labruna, 2009), and Amblyomma ovale Koch, the vector of 
another human pathogen, Rickettsia parkeri (Sabatini et al., 2010).

MATERIAL AND METHODS

Whole A. aureolatum non-engorged females collected in 2010 from domestic dogs of 
São Bernardo Municipality, State of São Paulo, Brazil (Ogrzewalska et al., 2012) were sub-
jected to DNA extraction using the DNeasy tissue kit (Qiagen; Hilden, Germany) according 
to the manufacturer protocol. Microsatellites were isolated following an enrichment protocol 
(Billotte et al., 1999) with modifications. DNA was digested with AfaI (New England Biolabs; 
Ipswich, MA, USA) and the fragments were ligated to adapters at the AfaI restriction site. 
The 300-1200-base pair (bp) fragments were selected for and purified using the Quiaquick 
PCR purification kit (Qiagen). Positive fragments containing microsatellite fragments were 
selected by hybridization with biotinylated oligonucleotides that were complementary to the 
repetitive sequence CT/GT, and were recovered using magnetic beads linked to streptavidine. 
Microsatellite-rich fragments were amplified by polymerase chain reaction (PCR) and cloned 
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into the vector pGEM-T (Prodimol; Biotecnologia; Belo Horizonte, MG, Brazil). Escherichia 
coli cells were transformed with the plasmids and incubated overnight with ampicillin for 
selection. The inserts were amplified with the T7 promoter and M13 reverse plasmid vector 
primers and purified using ExoSAP-IT (GE Healthcare Life Sciences; Little Chalfont, UK) 
according to the manufacturer protocol. Both strands were sequenced using the Big Dye cycle 
sequencing kit using ABI 3700 sequencers (Applied Biosystems; Foster City, CA, USA). 

For positive clones, we used Oligo 4.0 to design PCR primer pairs that were comple-
mentary to the flanking regions of microsatellites that had at least 5 repeat motifs. Primer pairs 
complementary to sequences flanking the repeat element were designed to amplify unique loci 
using the Primer 3 software (Rozen and Skaletsky, 2003), and then analyzed using the Oligo 
Explorer program (Javed et al., 2010) to exclude sequences showing dimer, heterodimer, and 
hairpin formations. Oligonucleotides located too close to the vector or in regions of low qual-
ity sequences were excluded.

Polymorphic microsatellites identified in the present study were further characterized in 
38 adult A. aureolatum individuals collected from domestic dogs in Santo André Municipality, 
State of São Paulo, Brazil (Ogrzewalska et al., 2012). DNA was extracted as described above.

PCRs were optimized and performed in a Mastercycler pro S vapo.protectTM ther-
mocycler (Eppendorf; Hamburg, Germany) in 25-μL volumes containing 12.5 μL DreamTaq 
Green PCR Master Mix (Sinapse Biotecnologia Ltda; São Paulo, Brazil), 1 μL of each primer 
at 10 μM, 8 μL molecular-grade water, and 2.5 μL template (approximately 300 ng tick DNA). 
Reactions were performed under the following conditions: 3 min at 95°C, followed by 35 
(primer 73, 130, 12, 110), 40 (primer 65, 104, 123), or 45 (primer 113) cycles of 15 s at 95°C, 
30 s at the locus-specific annealing temperature (Table 1), and 30 s at 72°C; final extension 
was performed for 5 min at 72°C. Amplified products were separated by electrophoresis on 
a denaturing 7% polyacrylamide gel and visualized by silver nitrate staining by consecutive 
exposure to a fixing solution. Each locus was genotyped by direct visualization of the bands 
in a transilluminator according to the procedure of Sanguinetti et al. (1994). Allele sizes were 
determined by comparison to a known size (10-bp) ladder (Invitrogen; Carlsbad, CA, USA). 

Observed and expected heterozygosities were calculated using Genepop (Raymond 
and Rousset, 1995). To verify Hardy-Weinberg equilibrium (HWE), Fisher’s exact test was 
performed (Table 1). For linkage disequilibrium, the G test was used. All tests were corrected 
for multiple comparisons using Bonferroni’s correction (Rice, 1989). In addition, amplifica-
tion of 5 individual adults of A. ovale collected in Ubatuba Municipality, São Paulo, and 5 
adults of A. cajennense collected in the Grande Sertão Veredas National Park, Minas Gerais, 
were tested with the obtained primers using the PCR conditions described above.

RESULTS AND DISCUSSION

A total of 86 clones were randomly chosen from the library and tested for satellite 
sequences using the PCR approach. From these samples, 34 (39.5%) tested positive for mi-
crosatellite fragments. Among the clones with microsatellites, 20 (58.8%) had microsatellite 
fragment sequences and a flanking region of adequate size for the design of forward and re-
verse primers. Twelve loci were discarded because they were monomorphic or showed a high 
incidence of nonspecific bands. Finally, 8 polymorphic microsatellites were identified in the 
present study (Table 1). The number of observed alleles in the 38 A. aureolatum individual 
ticks ranged from 2-9, with observed heterozygosities (HO) of 0.184-0.647. Expected hetero-
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zygosity (HE) varied from 0.251-0.747. We did not observe disequilibrium linkage between 
any pairs of loci (P > 0.05). Six loci presented deviation from the expected frequencies in 
HWE (P < 0.05; Table 1) and the inbreeding coefficient (f) varied from 0.022-0.560 (average 
0.350); thus, the departure from HWE in most loci was the result of the high-value inbreeding 
coefficient (Hataway et al., 2011) rather than the effect of null alleles.

Cross-species amplification of the 8 loci was scored as positive (in the expected size 
range) for A. ovale and A. cajennense. These microsatellite loci may be useful for genetic studies 
of these species and likely for other Amblyomma species that require testing in further studies.

For ticks (Ixodida), microsatellite markers have been developed and tested only for 
the genera Ixodes (Delaye et al., 1998; McCoy and Tirard, 2000), Bothriocroton (Guzinski et 
al., 2008), and Rhipicephalus (Chigagure et al., 2000; Kanduma et al., 2012); therefore, this is 
the first study to develop such markers for the genus Amblyomma.

Microsatellite markers developed for A. aureolatum should enable the examination 
of a diverse range of questions related to tick dispersal among hosts between BSF-endemic 
and non-endemic areas. This data will be valuable for examining the evolution of local ad-
aptation in this host-parasite system and for examining the epidemiology of BSF and other 
Amblyomma-borne diseases.
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