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ABSTRACT. The aim of this study was to explain the pathogenesis 
and deterioration process of breast cancer. Breast cancer expression 
profile data GSE27567 was downloaded from the Gene Expression 
Omnibus (GEO) database, and breast cancer-related genes were 
extracted from databases, including Cancer-Resource and Online 
Mendelian Inheritance In Man (OMIM). Next, h17 transcription factor 
data were obtained from the University of California, Santa Cruz. 
Database for Annotation, Visualization, and Integrated Discovery 
(DAVID)-enrichment analysis was applied and gene-regulatory 
networks were constructed by double-two-way t-tests in 3 states, 
including normal, benign, and malignant. Furthermore, network 
topological properties were compared between 2 states, and breast 
cancer-related bub genes were ranked according to their different 
degrees between each of the two states. A total of 2380 breast cancer-
related genes and 215 transcription factors were screened by exploring 
databases; the genes were mainly enriched in their functions, such as 
cell apoptosis and proliferation, and pathways, such as p53 signaling 
and apoptosis, which were related with carcinogenesis. In addition, 
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gene-regulatory networks in the 3 conditions were constructed. By 
comparing their network topological properties, we found that there is 
a larger transition of differences between malignant and benign breast 
cancer. Moreover, 8 hub genes (YBX1, ZFP36, YY1, XRCC5, XRCC4, 
ZFHX3, ZMAT3, and XPC) were identified in the top 10 genes 
ranked by different degrees. Through comparative analysis of gene-
regulation networks, we identified the link between related genes and 
the pathogenesis of breast cancer. However, further experiments are 
needed to confirm our results.

Key words: Gene expression profile; Gene-regulatory network; 
Network topological properties; Benign and malignant breast cancer

INTRODUCTION

Breast cancer is the most common malignant tumor in females, with an incidence 
varying largely by race/ethnicity, socioeconomic status, and geographic region (Ma and 
Jemal, 2013). In general, cancer is categorized as non-invasive or benign when the cancer 
cells are confined to their place of origin, do not threaten life, and do not spread outside of 
the breast, and as invasive or malignant when the cancer cells break through the duct into 
the surrounding fatty and connective tissues and may lead to death if not detected or cured 
(Jemal et al., 2005). Public health data indicate that the global burden of breast cancer in 
women, measured by its incidence, mortality, and economic costs, is substantial, and is cur-
rently increasing (Coughlin and Ekwueme, 2009). Therefore, the research and treatment of 
breast cancer is very significant for human health.

Recently, a large number of studies have been conducted to examine breast cancer, 
which involves many genes and pathways. Tumor suppressor genes (TP53, ATM, PTEN, 
CHK2, BRCA1, and BRCA2) play major roles in familial human breast cancer, while other 
genes that are involved in a large number of human cancers, including breast cancer, are 
either tumor suppressors (RB1 and RAD51) or oncogenes (cMYC) (Fritz et al., 2013). In 
addition, the Notch, Hedgehog, nuclear factor-κB, and PIK3CA pathways are involved in 
breast cancer development (Jiao et al., 2012). However, the relationships between breast 
cancer-related genes and the pathogenesis of breast cancer remain unclear. Understanding 
these mechanisms would facilitate the search for new therapeutics for breast cancer.

Many studies have examined the pathogenesis of diseases by using gene-regulatory 
networks (Araki et al., 2013). Moreover, gene expression profile data have been widely 
used for the screening of breast cancer-related genes (Abba et al., 2010), classification 
of breast cancer subtypes (Morrison et al., 2012), and for the diagnosis, treatment, and 
prognosis of breast cancer (Aleskandarany et al., 2012). We collected breast cancer-related 
genes from databases, such as the Gene Expression Omnibus (GEO), Cancer-Resource, 
and Online Mendelian Inheritance In Man (OMIM), constructed gene-regulatory networks 
in three states, including normal, benign, and malignant, and then compared network to-
pological properties between 2 states. Finally, we selected all hub genes in the 3 networks, 
and then ranked all of the genes according to differences in genetic degrees between two 
conditions.
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MATERIAL AND METHODS

Expression profile data

We searched the GEO database (http://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 
2005) and downloaded breast cancer expression profile data GSE27567 (LaBreche et al., 
2011), which contains 31 sample chips from normal tissues, 37 from benign breast tissues, 
and 57 from malignant breast tissues. Through corresponding relationships between genes 
and probes in chip platform GPL570, the probe number was converted into a corresponding 
gene symbol. As one gene corresponds to multiple probes and consists of multiple expres-
sion values, we used the average value as the sole representative.

Breast cancer gene data

Cancer-Resource (http://bioinf-data.charite.de/cancerresource/) (Ahmed et al., 
2011) is an integrated database of interactions between cancer-associated proteins and com-
plexes. OMIM (http://www.ncbi.nlm.nih.gov/omim) (van Triest et al., 2011) is a human 
Mendelian genetic disease database. COSMIC (http://www.sanger.ac.uk/genetics/CGP/cos-
mic/) (Bamford et al., 2004) is a cancer-related gene database that originated in the Cold 
Spring Harbor Laboratory, and GeneRIF (http://www.ncbi.nlm.nih.gov/gene/about-generif/) 
stores corresponding literature for the genes. We searched for breast cancer-related genes in 
the databases described above. Furthermore, to verify these collected genes, Gene Ontology 
(GO) (Harris et al., 2004) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kane-
hisa, 2002) enrichments were conducted using the Database for Annotation, Visualization, 
and Integrated Discovery (DAVID) (Dennis Jr. et al., 2003). A false discovery rate (FDR) 
<0.05 was used as a significance cut-off criterion.

Transcription factor data

We downloaded h17 transcription factor data from UCSC (http://genome.ucsc.edu/) 
(Karolchik et al., 2003).

Gene-regulatory network construction

We constructed gene-regulatory networks under specific conditions using the dou-
ble-two-way t-test, which was proposed in 2012 by Qi and Michoel. This method is supe-
rior to many existing methods such as CLR, Pearson, GENIE3, Spearman, Inferelator, and 
LeMoNe. The first step of the double-two-way t-test is to define the key control of each 
gene; the second is to calculate the differentially expressed value using a simple t algo-
rithm. Using a set of candidate transcription factors and key controls of all target genes, 
we next conducted the t-test for transcription factors according to defined key controls 
of genes, and obtained P values that were considered to represent the regulation strength 
of transcription factors to genes. Finally, potential regulatory relationships were screened 
according to the P value (<0.05). Gene-regulatory networks were constructed based on 
regulatory relationships.
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Comparison of network topological properties

Transcription factors and target genes are nodes in the gene-regulatory network, 
while regulation relationships between them are the edges in the network. Degree, which is 
defined as the number of edges connecting particular nodes, is the simplest measure of net-
work nodes (Boccaletti et al., 2006). For a directed graph, degree is divided into out-degree 
and in-degree, where out-degree is the number of edges from one node to other nodes and 
in-degree is the number of edges from other nodes to one node. Betweenness measures the 
probability that a node appears between the other nodes along the shortest path (Joy et al., 
2005). The larger the value of betweenness, the larger the bottleneck effect of this node. Once 
this node is broken, the entire connectivity of the network may be largely disordered. Close-
ness refers to the average distance from one node to all other nodes in the network (Ma and 
Zeng, 2003). A lower value for the closeness of a node indicates higher information transmis-
sion efficiency of this node. The cluster coefficient refers to closeness between one node and 
its neighboring nodes. The greater the clustering coefficient, the better the modularity of the 
node (Lin et al., 2011).

We calculated the out-degree, in-degree, betweenness, cluster coefficient, and close-
ness of the gene-regulatory networks using the igraph package (Csardi and Nepusz, 2006) 
under 3 conditions, and then compared the differences of these 5 attributes between 2 states 
using the rank sum test (Thomas et al., 2001).

Gene ranking

We selected all hub genes (level ≥10) in 3 networks, and then ranked all of the genes 
according to different degrees between each of the 2 conditions.

RESULTS

Breast cancer-related gene collection

We extracted breast cancer expression profile data GSE27567 from GEO and retrieved 
a total of 21,609 genes after processing. Next, we searched Cancer-Resource, OMIM, 
COSMIC, and GeneRIF, and obtained 631, 94, 19, and 1972 breast cancer-related genes, 
respectively. After integrating the 4 databases, 2380 non-redundant breast cancer-related 
genes were identified. Finally, we downloaded h17 transcription factor data from UCSC and 
obtained a total of 215 transcription factors, of which 59 were breast cancer-related genes with 
gene expression profile data.

DAVID-enrichment analysis

Functions and pathways were enriched to verify the reliability of the collected breast 
cancer-related genes. DAVID-enrichment analysis showed that these genes were mainly en-
riched in biological processes associated with carcinogenesis, such as cell death, cell prolifera-
tion, and apoptosis (Table 1) and pathways, such as the p53 signaling pathway, pathways in 
cancer, and apoptotic pathways (Table 2).
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Gene-regulatory network construction

According to the 2252 identified breast cancer-related genes and 59 transcription 
factors with known expression values, we constructed the gene-regulatory networks under 3 
conditions including normal, benign, and malignant. The gene-regulatory network under the 
normal condition consisted of 59 transcription factors, 1618 target genes, and 2512 regulation 
pairs (Figure 1). The regulatory network under the benign condition contained a total of 59 
transcription factors, 1687 target genes, and 2307 regulation pairs (Figure 2). The regula-
tory network under the malignant condition consisted of 59 transcription factors, 1766 target 
genes, and 2419 regulation pairs in all (Figure 3).

Comparison of network topological properties

As shown in Table 3, the difference in gene-regulatory networks between the normal 
state and malignant breast cancer was the most significant, and the difference between normal and 
benign breast cancer was less significant than that between benign and malignant breast cancer.

Gene ranking

We selected 53 genes at the hub (level ≥10) location for the 3 conditions (normal, 
benign, malignant). Moreover, in the gene ranking conducted according to different degrees 

Category Term     FDR

GOTERM_BP_FAT GO:0042127-regulation of cell proliferation 1.51E-107
GOTERM_BP_FAT GO:0010941-regulation of cell death 8.09E-101
GOTERM_BP_FAT GO:0043067-regulation of programmed cell death 1.07E-100
GOTERM_BP_FAT GO:0042981-regulation of apoptosis 1.25E-98
GOTERM_BP_FAT GO:0010033-response to organic substance 6.95E-67
GOTERM_BP_FAT GO:0043069-negative regulation of programmed cell death 2.69E-64
GOTERM_BP_FAT GO:0060548-negative regulation of cell death 5.03E-64
GOTERM_BP_FAT GO:0043066-negative regulation of apoptosis 5.90E-64
GOTERM_BP_FAT GO:0008284-positive regulation of cell proliferation 2.26E-56
GOTERM_BP_FAT GO:0010604-positive regulation of macromolecule metabolic process 1.26E-53

BP = biological process; FDR = false-discovery rate.

Table 1. DAVID function-enrichment analysis.

Category Term     FDR

KEGG_PATHWAY hsa05200:Pathways in cancer 4.89E-42
KEGG_PATHWAY hsa04115:p53 signaling pathway 6.84E-18
KEGG_PATHWAY hsa05212:Pancreatic cancer 5.73E-17
KEGG_PATHWAY hsa05215:Prostate cancer 2.33E-16
KEGG_PATHWAY hsa05222:Small cell lung cancer 8.51E-15
KEGG_PATHWAY hsa04210:Apoptosis 1.47E-14
KEGG_PATHWAY hsa04510:Focal adhesion 1.53E-14
KEGG_PATHWAY hsa05220:Chronic myeloid leukemia 1.33E-13
KEGG_PATHWAY hsa05210:Colorectal cancer 4.11E-13
KEGG_PATHWAY hsa04012:ErbB signaling pathway 6.88E-13

FDR = false-discovery rate.

Table 2. DAVID pathway-enrichment analysis.
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of genes between 2 states, we found that the degrees of hub genes were clearly changed, and 
there were 8 hub genes in the top 10 genes with highly different degrees (Table 4, bold).

Figure 1. Gene-regulatory network in normal condition. Red nodes are transcription factors, green nodes are target 
genes.

Figure 2. Gene-regulatory network in benign breast cancer samples. Red nodes are transcription factors, green 
nodes are target genes.
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Figure 3. Gene-regulatory network in malignant breast cancer samples. Red nodes are transcription factors, green 
nodes are target genes.

 In-degree Out-degree Betweenness Cluster coefficient Clossness

Normal vs benign 0.6 0.8 0.04   0.03 <2.2e-16
Normal vs malignant 1.46E-07   0.64 0.19   0.01 <2.2e-16
Benign vs malignant 1.17E-06 0.8 0.38 0.7 <2.2e-16

Table 3. Rank sum test results of network topological properties.

Gene symbol Normal degree Benign degree Malignant degree Diff degree

YBX1 156   56 178 312
ZFP36 135 111 146 292
YY1   26   75   33   98
XRCC5   58   25   68   86
WISP3     5   45     6   80
XRCC4   94   73 111   76
ZFHX3   80   49   87   76
WNT5A   38     5   42   74
ZMAT3   57   94   71   74
XPC   55   41   77   72

Table 4. Top 10 hub genes by degree ranking.

),,(,,)(deg_ malignatbenignnormaljijxxiabsreeDiff
ij

∈−=∑ . Bold = hub genes with highly different degrees.
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DISCUSSION

Breast cancer is characterized by a distinct metastatic pattern involving regional lymph 
nodes, as well as the bone marrow, lung, and liver (Müller et al., 2001) and confers a con-
siderable disease burden to individuals as well as an economic burden to society (Parkin and 
Fernández, 2006). Therefore, there is an urgent need to explore the pathogenesis of breast can-
cer for the development of an effective prevention strategy. Gene-regulatory network analysis 
allows for the systematic study of global network dynamics and permits the quantification of 
the relative influence and sensitivity of genes in their interactions with other genes (Shmulevich 
et al., 2002). A protein-network-based approach is used to identify markers involved in breast 
cancer metastasis, and screened markers are thought to be more reproducible than individual 
maker genes selected without network information; they also achieve higher accuracy in the 
classification of metastatic versus non-metastatic tumors (Chuang et al., 2007). In their study 
on microRNAs (miRNAs) and their target gene networks, O’Day and Lal (2010) described an 
association between alternating miRNA signatures and breast cancer tumorigenesis and metas-
tasis. However, there have been no studies comparing the gene expression and gene-regulatory 
networks under the normal state and benign and malignant breast cancers.

In this study, breast cancer-related genes were first screened and then verified by us-
ing function and pathway annotation. Next, the gene-regulatory networks for the 3 conditions, 
including normal, benign breast cancer, and malignant breast cancer, were constructed based 
on related genes and transcription factors. Network topological properties were compared to 
explore more subtle discrepancies. Finally, related genes were ranked according to different 
degrees between 2 disease states, and 8 genes were found to play an important role in the entire 
process of breast cancer.

Based on DAVID-enrichment analysis, breast cancer-related genes were mainly en-
riched in biological processes associated with carcinogenesis, such as apoptosis, and in the 
p53 signaling pathway. Apoptosis repressor with caspase recruitment domain (ARC) promotes 
breast tumorigenesis, metastasis, and chemoresistance (Medina-Ramirez et al., 2011). The p53 
pathway reduces cancer initiation by inducing apoptosis or cell cycle arrest in response to a 
variety of stress signals (Carson and Lois, 1995).

According to gene-regulatory networks constructed for the 3 conditions, including nor-
mal and benign and malignant cancer, there were 59 transcription factors, but different corre-
sponding target genes and regulation relationships among them. For example, the transcription 
factor Wnt-induced-secreted-protein-1 (WISP1) regulated the RUNX2, PIM1, MAST1, LMTK3, 
KLK12, and KCNB1 genes under normal conditions, while WISP1 regulated the PDE5A and 
BHMT genes under malignant conditions. However, in the benign condition, WISP1 regulated 
many different genes, including TSG101, TIAM1, and SCGB2A2. WISP-1 is a cysteine-rich, 
secreted factor belonging to the CCN family of growth factors (Soon et al., 2003), and its ex-
pression in some cells results in transformation and tumorigenesis (Su et al., 2002).

By conducting a comparative analysis of the network topological properties of gene-
regulatory networks for the 3 conditions, differences in gene-regulatory networks between the 
normal state and the malignant breast cancer state were more significant than those between the 
normal state and the benign breast cancer state. This indicates that a large transition occurs from 
the benign to malignant breast cancer condition, which is consistent with the medical definition. 
We can infer that the double-two-way t-test used for the gene-regulatory construction was reliable.
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Based on gene ranking analysis, we screened 8 hub genes (YBX1, ZFP36, YY1, 
XRCC5, XRCC4, ZFHX3, ZMAT3, and XPC) among the top 10 genes in the change in de-
gree rank, which are thought to play an important role in the entire process of breast cancer. 
The Y box binding protein-1 gene (YBX-1) is an oncogene that is overexpressed in cancers 
(Dolfini and Mantovani, 2013) and plays a significant role in the processes of proliferation, 
apoptosis, and control of tumor cell response to toxic agents, including chemotherapy. Its high 
nuclear expression is associated with poor survival of patients with early-stage breast cancer, 
indicating its potential as a prognostic factor (Maciejczyk et al., 2012). Zinc finger protein 36 
(ZFP36) is a tandem CCCH zinc-finger RNA-binding protein that regulates the stability of 
certain AU-rich element mRNAs involved in breast cancer-related processes (Al-Souhibani et 
al., 2010). ZFP36 gene defects will cause an imbalance in the cellular steady state, leading to 
over-expression of cancer genes and cancer cell metastasis (Al-Ahmadi et al., 2013). Yin Yang 
1 (YY1) is highly expressed in various types of cancers and regulates tumorigenesis through 
multiple pathways. Depletion of YY1 inhibited the migration, invasion, and tumor formation 
of breast cancer cells (Wan et al., 2012). Additionally, activation of the YY1 transcription 
factor is associated with the migration of breast cancer (Siletz et al., 2013). Thus, these genes 
may be involved in the pathogenesis of breast cancer. In conclusion, our data provide a com-
prehensive bioinformatic analysis of the genes and networks involved in the progression of 
breast cancer. Through comparative analysis of gene-regulatory networks, we identified the 
link between related genes and the pathogenesis of breast cancer. However, further experi-
ments are needed to confirm our results.
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