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ABSTRACT. We tested microsatellites that were developed for the 
saltwater crocodile (Crocodylus porosus) for cross-species amplification 
and to provide an estimate of inter- and intraspecific variation among 
four species of Neotropical crocodiles (C. rhombifer, C. intermedius, C. 
acutus, and C. moreletii). Our results indicated that with the exception 
of 2 loci in C. intermedius, all 10 microsatellite loci were successfully 
amplified in the 4 species, producing a set of variably sized alleles that 
ranged in number between 2 and 14 alleles per locus. Similarly, private 
alleles (i.e., unique alleles) also were reported in all 4 species for at least 
3 loci. The mean observed and expected heterozygosities (averaged 
across species for all 10 loci combined) ranged from 0.39 to 0.77 and 
from 0.44 to 0.78, respectively. In addition to this, we evaluated these 
microsatellites in 2 populations of C. acutus and C. moreletii to assess 
their utility in estimating intraspecific levels of polymorphisms. These 
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microsatellites also showed considerable allelic variation in population 
level analysis. The set of 10 microsatellite loci in our study had the 
potential to be used as a tool in population and conservation genetic 
studies of Neotropical crocodiles.

Key words: Microsatellites; Crocodiles; Cross-species amplification; 
Neotropical crocodiles

INTRODUCTION

Microsatellites are repetitive sequences of 1 to 6 bp of DNA that are mostly found in 
the non-coding regions of the eukaryotic genome and are known to have high mutation rates 
that lead to greater allelic variability and high levels of polymorphism (Wright and Bentzen, 
1994). Because they are hypervariable and occur ubiquitously, microsatellites have widely 
been used as tools for a variety of fields of study such as population and conservation genet-
ics, molecular ecology (mating behavior and gene flow), and wildlife DNA forensic analyses 
(Glenn et al., 1998; Fitzsimmons et al., 2001; Davis et al., 2001, 2002; Dever et al., 2002; 
Avise, 2004; Anmarkrud et al., 2008).

Despite their widespread application in this discipline, one drawback of using mi-
crosatellites as genetic markers has been the development of primers, which can involve 
both considerable time and resources. Fortunately, a number of microsatellite loci are con-
served enough across species to be useful in interspecific and intraspecific marker com-
parisons (Glenn et al., 1998). Successful cross-species amplification of microsatellites has 
been reported from groups such as mammals (Williamson et al., 2002; Gunn et al., 2005), 
birds (Primmer et al., 1996, 2005), insects (Wilson et al., 2004), fish (Scribner et al., 1996; 
King et al., 2001), snakes (King, 2009; Vandewege et al., 2012), and crocodilians (Dever 
and Densmore III, 2001; Zucoloto et al., 2006; Weaver et al., 2008; Milián-Garcia et al., 
2011; Rodriguez et al., 2008, 2011).

The “Neotropical crocodiles” consist of 4 species: the American crocodile (Cro-
codylus acutus), Cuban crocodile (C. rhombifer), Orinoco crocodile (C. intermedius), and 
Morelet’s crocodile (C. moreletii). Of the 4 species, 2 (C. rhombifer and C. intermedius) are 
considered critically endangered (Crocodile Specialist Group, 1996; Targarona et al., 1996), 
whereas C. acutus is considered vulnerable (Ponce-Campos et al., 2012) and C. moreletii is 
regarded as lower concern (Cedeño-Vázquez et al., 2012). Given their conservation status, 
having a larger number of successfully amplified microsatellite loci that exhibit high levels 
of polymorphism at the inter- and intraspecific levels in these Neotropical crocodiles could 
serve as an important conservation tool.

Recently, Miles et al. (2009a) developed 253 novel microsatellite loci from the salt-
water crocodile (C. porosus) library and tested 82 microsatellites for cross-species amplifica-
tion in 18 species of crocodilians (Miles et al., 2009b). The set of microsatellites included in 
our study consisted of 5 loci that were successfully cross-species amplified by Miles et al. 
(2009b) and 5 loci tested herein for the first time for cross-species amplification in Neotropical 
crocodiles from Miles et al. (2009a).

We evaluated these 10 microsatellite loci for cross-species amplification in all 4 spe-
cies of Neotropical crocodiles and in populations from 2 of these species, C. acutus (from 
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Panama and Mexico) and C. moreletii (from Mexico and Belize). The objectives of our study 
were to: a) test microsatellite primers that were developed for C. porosus for cross-species 
amplification in Neotropical crocodiles, b) assess the utility of these microsatellites in estimat-
ing levels of inter- and intraspecific polymorphism among the Neotropical crocodiles, and c) 
identify private alleles (alleles that are unique to a particular species or population) at the spe-
cies and population levels that can be used to identify species and populations.

MATERIAL AND METHODS

Tissue samples were taken from 5 C. rhombifer, 5 C. intermedius, 26 C. acutus (16 
from Panama and 10 from Mexico), and 45 C. moreletii (32 from Belize and 13 from Mexico) 
individuals. Total genomic DNA was isolated by proteinase K digestion and extracted using 
the cetyltrimethylammonium bromide-phenol-chloroform technique (Sambrook et al., 1989; 
Palumbi, 1996). We first chose 40 microsatellite loci from Miles et al. (2009a) that were re-
ported to have high levels of polymorphism. We then tested those 40 loci for cross-species 
amplification in C. moreletii and C. acutus, and only 10 loci showed consistent amplification. 
The 10 microsatellite loci that showed cross-species amplification in C. moreletii and C. acu-
tus were further tested for cross-species amplification in other Neotropical crocodiles using a 
2-primer polymerase chain reaction (PCR). Sequence-specific forward primers from Miles et 
al. (2009a) were modified by adding a 5ꞌ-M13 tail, whereas the reverse primers were used as 
they were designed. The M13 tail is a complementary oligonucleotide sequence of a univer-
sal M13 fluorescence nucleic acid polymer (5ꞌ-CACGACGTTGTAAAACGAC-3ꞌ). The final 
amplification was performed using “3-primer competition” PCR (Schuelke, 2000) (Tables 1 
and 2). Fluorescent dye labels (FAM, VIC, NED, and PET; Applied Biosystems, USA) were 
used to label the universal M13 nucleotide 5ꞌ-tail (Table 1). The PCR products were electro-
phoresed on 2% agarose gels and run for 20 min at 70-75 V.

PCRs were carried out using 2 different programs (Table 1). The TD-65 program (modi-
fied from Miles et al., 2009a) consisted of an initial denaturation step of 95°C for 3 min; 4 cycles 
of 95°C for 30 s, 65°C for 30 s, and 72°C for 45 s; 4 cycles of 95°C for 30 s, 62°C for 30 s, and 
72°C for 45 s; 8 cycles of 95°C for 30 s, 60°C for 30 s, and 72°C for 45 s; 24 cycles of 95°C for 
30 s, 55°C for 30 s, and 72°C for 45 s; and a final extension step at 72°C for 5 min. Similarly, the 
T-55 program consisted of an initial denaturation step of 94°C for 3 min; 34 cycles of 94°C for 
40 s, 55°C for 40 s, and 72°C for 60 s; and a final extension step at 72°C for 5 min. An ABI 3100 
Avant genetic analyzer (Applied Biosystems) was used to detect and size fragments that were 
fluorescently labeled with the reaction (for each microsatellite), which consisted of a final volume 
of 12 µL including 0.6 µL LIZ (500) standard, 1.5 µL PCR product, and 9.9 µL formamide.

Electrophoretograms were analyzed in GENEMAPPER 3.7 (Applied Biosystems) us-
ing the following analysis method: the size calling parameter was set at local Southern, the 
signal levels for homozygous and heterozygous minimum peak height were set at 140 and 
85, respectively (following the manufacturer guideline for ABI 3100), and the minimum peak 
height ratio was set at 0.2. These parameters were selected to identify any stutter peaks that 
might be present and also to identify the alleles that might have unequal amplification and thus 
were not scored. During the amplification process of microsatellites, the formation of stutter 
peaks is usually caused by the effects of polymerase slippage, which can ultimately cause a 
single or multiple repeat units to be skipped or added to the strands that are produced during 
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Table 1. Primer sequences (provided by Miles et al., 2009a), fluorescent dye labels, and PCR conditions for 
the 10 microsatellite loci.

*Previously untested microsatellites from Miles et al. (2009a).

Locus Primers (5ꞌ to 3ꞌ) Fluorescent dye label PCR conditions

CpDi06 F: TGTTGGGCACTTTGAAC PET T-55
 R: GTTTAAGAAAAATGGTGGAAAAC
CpP2201 F: CAAGTGACCCCTTTTCAG VIC T-55
 R: GTTTATTTCTTGTTTGGCACATC
CpP2202* F: GCAACAAAAGACCTTGACA NED T-55
 R: GTTTGGTTGGGTGGAATTATATAC
CpP208* F: CACATGGCTTTTGTTCTGAG FAM TD-65
 R: GTTTCCTGCAAAATGTTCTCCTA
CpP1306* F: TTCTCTCTAGGAGCCACTCAC NED TD-65
 R: GTTTAGGGAGACATCTAGGAAGAAC
CpP801 F: TTGGCATTAGATTGGTAGAC VIC  T-55
 R: GTTTCTATGCCAAAGCTACAAC
CpDi04* F: TTCTAAACAGTCCAGGATGA FAM  T-55
 R: GTTTAAATTTCACTAGATGCCATAA
CpP815 F: GGTTAAGTGCCACACAAGT NED T-55
 R: GTTTGGCCAATTTCTAATGAA
CpP314* F: GAAATGCCACTAATACACACA FAM T-55
 R: GTTCCAATTCTTCAGGTCCTTAT
CpP4311 F: GGCTGCTCTGTGTTTG VIC TD-65
 R: GTTTGGGTTTAGCATCATGT
CpDi06 F: TGTTGGGCACTTTGAAC PET T-55
 R: GTTTAAGAAAAATGGTGGAAAAC
CpP2201 F: CAAGTGACCCCTTTTCAG VIC T-55
 R: GTTTATTTCTTGTTTGGCACATC
CpP2202* F: GCAACAAAAGACCTTGACA NED T-55
 R: GTTTGGTTGGGTGGAATTATATAC
CpP208* F: CACATGGCTTTTGTTCTGAG FAM TD-65
 R: GTTTCCTGCAAAATGTTCTCCTA
CpP1306* F: TTCTCTCTAGGAGCCACTCAC NED TD-65
 R: GTTTAGGGAGACATCTAGGAAGAAC
CpP801 F: TTGGCATTAGATTGGTAGAC VIC  T-55
 R: GTTTCTATGCCAAAGCTACAAC
CpDi04* F: TTCTAAACAGTCCAGGATGA FAM  T-55
 R: GTTTAAATTTCACTAGATGCCATAA
CpP815 F: GGTTAAGTGCCACACAAGT NED T-55
 R: GTTTGGCCAATTTCTAATGAA
CpP314* F: GAAATGCCACTAATACACACA FAM T-55
 R: GTTCCAATTCTTCAGGTCCTTAT
CpP4311 F: GGCTGCTCTGTGTTTG VIC TD-65
 R: GTTTGGGTTTAGCATCATGT

Reagents                                                                                        Final concentration of each reagent for the respective loci

 CpDi06, CpP2201,  CpP1306, CpP801, CpDi04,
 CpP2202, CpP208 CpP815, CpP314 , CpP4311

Taq buffer 1X 1X
MgCl2 2 mM 2 mM
dNTPs 0.52 mM each 0.52 mM each
Forward primer 0.2 µM 0.2 µM
Reverse primer 0.2 µM 0.2 µM
M13 0.1 µM 0.1 µM
Taq Polymerase* 0.03 U/µL 0.028 U/µL
Template DNA 1 ng/µL 0.8 ng/µL

Table 2. Reaction mix for amplification of the 10 microsatellite loci.

*Qiagen Taq polymerase.
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PCR (Watzinger et al., 2006). Using the fluorescent-based PCR technique, stutter peaks can be 
recognized as additional products of the PCR that have a lower peak height; the majority of the 
time, they tend to appear 1 repeat unit downstream from the true allele (Watzinger et al., 2006).

CERVUS 3.0 (Marshall et al., 1998) was used to estimate the number of alleles (A), 
observed heterozygosity (HO), and expected heterozygosity (HE). GENALEX 6.0 (Peakall and 
Smouse, 2006) was used to estimate the allele frequency, number of private alleles (AP), and 
probability of identity (PI) by locus.

RESULTS

Cross-species amplification was observed among all possible PCRs involving C. acu-
tus, C. moreletii, and C. rhombifer, and it was observed at the 80% level for C. intermedius. 
With only 2 exceptions (CpDi06 and CpP801 for C. intermedius), all 10 microsatellite loci 
were successfully amplified in all 4 species of Neotropical crocodiles. All amplified loci pro-
duced a variety of alleles and appeared to be polymorphic in all 4 species with the exception 
of 1 locus (CpP2202) in C. rhombifer, which was found to be monomorphic.

Stutter peaks of all 10 loci were present in low frequencies for one or more species 
(Table 3). The presence of stutter peaks can potentially create incorrect scoring between al-
leles, where size differences are small, and can lead to calling true-heterozygotes as pseudo-
homozygotes or the opposite (Skotheim et al., 2001). Using an appropriate analysis method in 
GENEMAPPER 3.7 (see above in Material and Methods) to analyze the electrophoretograms, 
we were able to identify stutter peaks and any other alleles that were not scored due to unequal 
amplification, which reduced the misidentification of alleles.

A total of 94 different alleles were found among the 10 loci combined for all species. 
The A value ranged from 2 to 14 with an overall mean of 4.95 (Table 3). The estimates of HO 
and HE ranged from 0.39 to 0.77 and 0.44 to 0.78, respectively, with a mean of 0.62 and 0.61, 
respectively (Table 3). The PI by locus (the probability that 2 individuals drawn at random 
from a population will have the same genotype at multiple loci) ranged from 0.08 to 0.38 with 
a mean of 0.18 (Table 3). Diagnostic private (unique) alleles were found in all 4 species for at 
least 3 loci (Table 3). One interesting observation was that, although only 5 individuals of C. 
rhombifer were genotyped, there were a total of 33 alleles and 8 private alleles reported for this 
species, further demonstrating the hyper-variability of these microsatellites.

A finer scale population-level analyses (Tables 4 and 5) showed that all the microsat-
ellite loci were polymorphic and that there was considerable allelic variation between the 2 
populations of C. acutus from Panama (mean 4.4 alleles per locus) and Mexico (mean 4.8 al-
leles per locus), as well as between the 2 populations of C. moreletii from Mexico (mean of 4 
alleles per locus) and Belize (mean 6.6 alleles per locus). Private alleles were reported in each 
population for at least 3 loci (Table 4). Although the frequencies of the private alleles were 
generally low, 2 alleles (allele 242 of locus CpDi06 and allele 149 of locus CpP801) in the C. 
acutus population from Panama had reasonably high frequencies (0.47 for both; Table 5). The 
mean HO was higher in the population of C. acutus from Mexico (0.70) than that from Panama 
(0.61; Table 4); however, there was not a statistically significant difference between the mean 
HO of these 2 populations (P > 0.05). Similarly, the mean HO was higher in the population of 
C. moreletii from Belize (0.76) than that from Mexico (0.70; Table 4); however, there was not 
a statistically significant difference between the mean HO of these 2 populations (P > 0.05).
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Table 3. Number of alleles per locus (A), number of private alleles per locus (AP), probability of identity 
(PI), size range of the PCR products, observed heterozygosity (HO), and expected heterozygosity (HE) of 10 
microsatellite loci in each of the 4 species of Neotropical crocodiles.

Locus Species   A AP PI Size (bp) HO HE

CpP2201 C. rhombifer*   3 1 0.08 183-235    0.2 0.64
 C. intermedius   4 1 0.26 179-227    0.4 0.53
 C. acutus   6 1 0.08 191-235 1 0.73
 C. moreletii   4 0 0.18 191-227      0.86 0.57
 Mean        4.25 - 0.15 -      0.62 0.62
  A AP PI Size (bp) HO HE
 C. rhombifer   1 0 0.39 184 - -
CpP2202 C. intermedius*   3 1 0.38 180-196    0.6 0.69
 C. acutus   2 0 0.18 188-200      0.96 0.51
 C. moreletii   3 0 0.18 188-200      0.96 0.58
 Mean        2.25 - 0.28 -      0.63 0.45
  A AP PI Size (bp) HO HE
 C. rhombifer*   3 2 0.05 218-236    0.6 0.51
CpDi06 C. intermedius - - - - - -
 C. acutus 10 7 0.18 224-264      0.92 0.76
 C. moreletii   5 1 0.18 226-248      0.77 0.55
 Mean      4.5 - 0.10 -      0.57 0.46
  A AP PI Size (bp) HO HE
 C. rhombifer*   3 1 0.39 179-191    0.2 0.51
CpP208 C. intermedius   2 0 0.38 179-191    0.8 0.53
 C. acutus*   2 0 0.38 179-191      0.92 0.51
 C. moreletii   2 0 0.38 179-191      0.71 0.46
 Mean        2.25 - 0.38 -      0.66 0.50
  A AP PI Size (bp) HO HE
 C. rhombifer   5 2 0.25 234-270    0.6 0.82
CpP314 C. intermedius   4 0 0.13 246-266 1 0.78
 C. acutus   8 0 0.09 246-282    0.5 0.80
 C. moreletii 10 4 0.09 238-286      0.64 0.73
 Mean        6.75 - 0.14 -      0.69 0.78
  A AP PI Size (bp) HO HE
 C. rhombifer   4 0 0.39 195-211 1 0.73
CpP4311 C. intermedius*   2 0 0.18 187-199 1 0.56
 C. acutus   4 0 0.14 195-219      0.28 0.54
 C. moreletii   7 2 0.14 175-219      0.58 0.59
 Mean        4.25 - 0.21 -      0.72 0.61
  A AP PI Size (bp) HO HE
 C. rhombifer   4 0 0.11 218-242    0.8 0.80
CpP815 C. intermedius   2 0 0.08 222-242 1 0.56
 C. acutus 10 4 0.05 206-246      0.46 0.85
 C. moreletii   6 0 0.09 218-246      0.82 0.71
 Mean     5.5 - 0.08 -      0.77 0.73
  A AP PI Size (bp) HO HE
 C. rhombifer   2 0 0.22 157-169    0.4 0.36
CpP801 C. intermedius - - - - - -
 C. acutus 10 2 0.05 145-185      0.56 0.85
 C. moreletii 14 6 0.03 141-201      0.75 0.86
 Mean      6.5 - 0.08 -      0.43 0.52
  A AP PI Size (bp) HO HE
 C. rhombifer*   5 2 0.23 156-170    0.6 0.87
CpDi04 C. intermedius*   3 2 0.46 164-176    0.2 0.73
 C. acutus   6 1 0.18 142-166      0.17 0.49
 C. moreletii   8 1 0.14 142-166      0.59 0.64
 Mean      5.5 - 0.25 -      0.39 0.68
  A AP PI Size (bp) HO HE
CpP1306 C. rhombifer   3 0 0.16   93-109    0.4 0.60
 C. intermedius   6 0 0.11   85-121 1 0.84
 C. acutus   9 1 0.05   81-149      0.63 0.78
 C. moreletii 13 4 0.05   77-153      0.81 0.83
 Mean        7.75 - 0.09 -      0.71 0.76

*Absence of stutter peaks in that species for that particular locus.
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DISCUSSION

All 10 microsatellites that were tested in our study were informative and produced 
a variety of both shared and private alleles at both the cross-species and inter-population 
levels. The number of alleles in a population (allelic richness) and the number of unique 
alleles in a population (private allelic richness) are considered to be useful for many 
conservation and population genetics applications (Kalinowski, 2004) and can be used to 
infer the evolutionary history of a population (Castric and Bernatchez, 2003). Together, 
these measures of genetic diversity can be beneficial in identifying populations of Neo-
tropical crocodiles that exhibit low levels of genetic diversity so that specific conserva-
tion actions can be undertaken for those populations. Private allelic richness will also be 
informative in distinguishing between species and between different populations within 
a species. Despite its utility, there is no doubt that private allelic richness is a function of 
sample size (Kalinowski, 2004). Thus, additional sampling may reveal that many of the 
alleles that are currently recognized as private are actually not private.

The microsatellite loci that were used in our study, combined with previously 
developed microsatellite libraries (Fitzsimmons et al., 2001; Miles et al., 2009a,b), can be 
used to help conserve and manage these 4 species of Neotropical crocodiles. Microsatellites 
that can be successfully amplified in cross-species reactions can aid managers in 
identification of purebred populations as well as hybrid and admixed individuals. Because 
illegal hunting for skin and meat is a major threat to all Neotropical crocodiles, these 
markers can also be used as forensic tools for law enforcement to facilitate stricter 
regulations against illegal hunting (Targarona et al., 1996; Cedeño-Vázquez et al., 2012; 
Ponce-Campos et al., 2012). This suite of microsatellites will also help reduce the time 
and resources needed to characterize the genetic fingerprint of any particular species, thus 
adding microsatellites to the list of conservation tools that can be used in the management 
of Neotropical and other crocodile species.

   C. acutus - Panama (N = 16)   C. acutus - Mexico (N = 10)        C. moreletii - Mexico (N = 13)   C. moreletii - Belize (N = 32)

Locus A AP PI HO HE A AP PI HO HE A AP PI HO HE A AP PI HO HE

CpP2201 3 1 0.30 1.00 0.57 5 0 0.11 1.00 0.79 3 0 0.28 1.00 0.59   3 0 0.30 0.81 0.56
CpP2202 2 0 0.38 1.00 0.52 2 0 0.38 0.90 0.52 3 0 0.32 1.00 0.56   3 0 0.27 0.94 0.59
CpDi06 2 1 0.38 0.94 0.51 9 5 0.04 0.89 0.90 2 0 0.38 0.75 0.52   5 2 0.27 0.78 0.57
CpP208 2 0 0.38 0.94 0.51 2 0 0.38 0.89 0.52 2 0 0.38 0.92 0.52   2 0 0.42 0.63 0.44
CpP314 6 1 0.22 0.44 0.59 5 0 0.14 0.60 0.72 4 0 0.16 0.54 0.71 10 4 0.11 0.69 0.72
CpP4311 4 0 0.42 0.19 0.38 2 0 0.49 0.44 0.37 4 0 0.46 0.39 0.35   7 3 0.16 0.66 0.66
CpP815 8 3 0.09 0.31 0.78 6 1 0.08 0.70 0.81 4 1 0.16 0.77 0.72   5 0 0.15 0.84 0.70
CpP801 8 2 0.09 0.50 0.76 6 0 0.14 0.67 0.72 8 2 0.06 0.58 0.85 11 3 0.04 0.81 0.86
CpDi04 2 0 0.88 0.06 0.06 6 1 0.16 0.43 0.68 4 0 0.18 0.30 0.69   8 3 0.21 0.68 0.63
CpP1306 7 1 0.12 0.69 0.72 5 0 0.12 0.50 0.77 6 1 0.11 0.80 0.78 12 3 0.06 0.81 0.83
Mean 4.4 - 0.33 0.61 0.54 4.8 - 0.20 0.70 0.68 4.0 - 0.25 0.71 0.63 6.6 - 0.20 0.77 0.66

Table 4. Number of alleles per locus (A), number of private alleles per locus (AP), probability of identity (PI), 
observed heterozygosity (HO), and expected heterozygosity (HE) of 10 microsatellite loci in each of the 2 
populations of Crocodylus acutus and C. moreletii.
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Locus Allele Pop. 1a Pop. 2b Pop. 3c Pop. 4d

CpP2201
 191 0.06 - - 0.06
 211 0.53 0.42 - 0.28
 215 - 0.08 0.50 0.22
 227 0.41 0.50 - 0.33
 231 - - 0.44 0.11
 235 - -   0.06* -
CpP2202     
 188 0.44 0.46 0.50 0.55
 196 0.09 0.04 - -
 200 0.47 0.50 0.50 0.45
CpDi06     
 224 - - 0.53 0.11
 226   0.02* - - -
 228   0.03* - - -
 230 0.56 0.54 - 0.06
 242 - -   0.47* -
 244 - - -   0.11*
 246 0.05 - - 0.22
 248 0.34 0.46 - 0.11
 258 - - -   0.06*
 260 - - -   0.06*
 262 - - -   0.06*
 264 - - -   0.22*
CpP208     
 179 0.69 0.54 0.53 0.56
 191 0.31 0.46 0.47 0.44
CpP314     
 238   0.02* - - -
 242   0.02* - - -
 246 - -   0.09* -
 254 0.03 - 0.16 -
 258 0.03 - 0.63 -
 262 - - 0.06 0.10
 266 0.11 0.04 0.03 0.10
 270 0.22 0.31 - 0.50
 274 0.06 0.27 0.03 0.10
 278   0.03* - - -
 282 0.47 0.38 - 0.20
 286   0.02* - - -
CpP4311     
 175   0.03* - - -
 187 0.22 0.08 - -
 195 - - 0.78 0.22
 199 0.53 0.81 0.06 -
 203   0.03* - - -
 211 0.02 0.04 0.13 0.78
 215   0.08* - - -
 219 0.09 0.08 0.03 -
CpP815     
 206 - -   0.06* -
 210 - -   0.06* -
 214 - -   0.06* -
 218 0.03 - 0.22 0.10
 222 - - 0.41 0.10
 226 0.06 - 0.13 0.15
 230 0.31 0.35 0.03 -
 234 - - -   0.10*
 238 0.17 0.08 0.03 0.40
 242 -   0.19* - -
 246 0.42 0.38 - 0.15

Table 5. Allele frequencies of 10 microsatellite loci in populations of Crocodylus acutus and C. moreletii.

Continued on next page
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CpP801     
 141 0.05 0.17 - -
 145 - -   0.06* -
 149 - -   0.47* -
 153 0.06 - 0.09 -
 157 0.02 - 0.03 0.06
 161 0.06 0.21 0.06 -
 165 0.17 0.13 0.09 0.22
 169 0.03 - 0.09 0.06
 173 0.11 0.04 0.09 0.11
 177 0.28 0.29 - 0.50
 181   0.03* - - -
 185 - 0.04 - 0.06
 189   0.05* - - -
 193 -   0.04* - -
 197   0.14* - - -
 201 -   0.08* - -
CpDi04     
 142 0.48 0.45 - 0.07
 144 0.06 0.10 0.97 0.07
 146   0.02* - - -
 148 - - -   0.07*
 154 0.37 0.35 - 0.14
 156 0.02 0.10 0.03 0.57
 160   0.02* - - -
 162   0.02* - - -
 166 0.02 - - 0.07
CpP1306     
   77   0.02* - - -
   81 0.05 0.05 0.09 -
   85 0.33 0.25 - -
   89 0.03 0.10 - -
   93 0.19 0.40 - 0.06
   97 0.05 - 0.03 -
 101 0.06 - 0.09 -
 105 0.17 - - 0.19
 109 0.03 0.15 0.50 0.19
 113 0.05 - 0.16 0.44
 117 -   0.05* - -
 121 - - 0.03 0.13
 129   0.02* - - -
 149 - - 0.09 -
 153   0.02* - - -
aC. moreletii - Belize (N = 32); bC. moreletii - Mexico (N = 13); cC. acutus - Panama (N = 16); dC. acutus - Mexico 
(N = 10). *Private allele for that particular locus in that particular population.

Locus Allele Pop. 1a Pop. 2b Pop. 3c Pop. 4d

Table 5. Continued.
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