Clinical significance of fibroblast growth factor receptor-3 mutations in bladder cancer: a systematic review and meta-analysis

X. Liu*, W. Zhang*, D. Geng*, J. He, Y. Zhao and L. Yu

1State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai, China
2Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, China
3Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China

*These authors contributed equally to this study.
Corresponding author: L. Yu
E-mail: yulong201@yahoo.cn

Received February 25, 2013
Accepted July 26, 2013
Published February 20, 2014
DOI http://dx.doi.org/10.4238/2014.February.20.12

ABSTRACT. Mutations in the fibroblast growth factor receptor-3 (FGFR3) gene are frequently found in bladder cancer, but their prognostic value remains controversial. To globally summarize the association between FGFR3 mutations and the grade and stage of bladder cancer, and to analyze the predictive role of FGFR3 mutations with respect to survival, eligible studies were identified and assessed for quality through multiple search strategies. Risk ratio (RR) data were collected from studies comparing the number of FGFR3 mutants among low-grade and early-stage bladder cancer patients to the number among high-grade and late-stage patients. Hazard ratio (HR) data were collected from studies comparing survival in patients with mutant FGFR3 genes to those with wild-type genes. Studies were pooled, and the RRs of grade and stage and the HRs of survival were
calculated. Thirty studies were included in the present meta-analysis.

FGFR3 mutations were found to be closely associated with low-grade and early-stage bladder cancer, showing pooled RRs = 2.948 [95% confidence interval (CI) = 2.357-3.688] and 2.845 (95%CI = 2.145-3.773), respectively. Notably, patients with *FGFR3* mutations tended to show better disease-, progress-, and recurrence-free survival (HR = 0.561, 95%CI = 0.405-0.779), and better disease-specific survival (HR = 0.363, 95%CI = 0.266-0.496). This study demonstrated that *FGFR3* mutations are closely related to low grade, early stage, and better survival among bladder cancer patients.

Key words: FGFR3; Bladder cancer; Prognosis; Grade; Staging

INTRODUCTION

Bladder cancer (BC) is the seventh most common cancer worldwide, accounting for approximately 336,000 new cases each year. It is the seventh most common cause of death from cancer in men and the eighth most common cause in women. In most western countries, bladder cancer predominantly involves urothelial cell carcinoma (UC or UCC); however, in other countries, most bladder cancers are squamous cell carcinomas (Kaufman et al., 2009; Cheng et al., 2011). Conventional clinical and pathological indexes are widely used to grade and stage tumors and to eventually predict clinical outcome. However, their predictive value is limited because of low accuracy in BC patients. In the last decade, with the development of molecular mechanisms of tumorigenesis, a variety of biomarkers involved in key pathways in carcinogenesis have been shown to be clinically relevant. They may be useful as diagnostic and prognostic molecular markers. Among these candidates, the fibroblast growth factor receptor 3 (*FGFR3*) is one of the most attractive. It is detectable and measurable in patient specimens and can be considered representative of various tumor properties.

FGFR3 belongs to a family of tyrosine kinase receptors, and is encoded by four different genes, *FGFR1*-4. These receptors are glycoproteins composed of two to three extracellular immunoglobulin-like domains, a transmembrane domain, and a split tyrosine-kinase domain. FGFs, which are the ligands for FGFRs, bind to their extracellular domains to trigger downstream signaling, which regulates cell proliferation, differentiation, migration, and apoptosis. *FGFR3* gene mutations in the germline are well-known causes of skeletal syndromes. Somatic *FGFR3* mutations have been found in malignant neoplasms. *FGFR3* appears to be the most frequently mutated oncogene in bladder cancer. *FGFR3* mutations have also been detected in >70% of non-muscle-invasive bladder tumors, but they have only been detected in 10-20% of tumors that invade the bladder muscle. Although a number of studies have reported that *FGFR3* mutations are significantly associated with low tumor grade and early cancer stages, other studies have shown that they are not (Bodoor et al., 2010; Miyake et al., 2010). Therefore, the prognostic value of *FGFR3* remains controversial (Cheng et al., 2011; Mukhtar and Perry, 2011). Al-Ahmadie et al. (2011) and Bodoor et al. (2010) suggested that *FGFR3* might not be a significant prognostic indicator of survival. However, Hernández et al. (2006) showed that *FGFR3* mutations were associated with a lower rate of death from bladder cancer (P = 0.002). To date, however, no individual study has emerged with sufficient power to determine whether or not *FGFR3* mutations have any significant independent prognostic value.
The objective of the present study was to conduct a systematic review and meta-analysis of associations between stage or grade and \textit{FGFR3} mutations in bladder cancer. The impact of \textit{FGFR3} mutations with respect to clinical outcome, as represented by progress-free survival (PFS) and disease-specific survival (DSS), was also analyzed.

MATERIAL AND METHODS

We performed a meta-analysis in accordance with the guidelines issued by the Meta-analysis of Observational Studies in Epidemiology (MOOSE) group (Stroup et al., 2000).

Search strategy

We carefully searched articles in PubMed published from 1966 to January 30, 2012 to identify relevant studies. Two distinct sets of key words were used: “\textit{FGFR3} and bladder cancer” and “\textit{FGFR3} and bladder carcinoma”. The following criteria were used for preliminary screening: 1) the research team identified \textit{FGFR3} mutations in patients with bladder or urothelial cancer; 2) the research team compared the frequency of \textit{FGFR3} mutations in low-grade or early-stage BC patients to the frequency in high-grade or late-stage patients; 3) the research team evaluated the potential association between \textit{FGFR3} mutations and the survival outcome of BC. Eligible studies were required to meet the first criterion and either of the latter two criteria. Articles were excluded based on the following criteria: 1) review articles or letters; 2) non-English articles; 3) laboratory studies; 4) articles lacking key information, such as the sample size of the classified groups.

The titles, abstracts, full texts, and reference lists of all of the identified reports were examined independently by two reviewers. Each reviewer was responsible for collecting data for \textit{FGFR3} (X. Liu, W. Zhang, and D. Geng). Each reviewer’s extracted data were double-checked by both other reviewers. Disagreements were resolved by consensus among the three readers or consultation with a fourth reviewer (Y. Zhao). The authors of the studies were contacted by e-mail to request additional information or data for meta-analytic calculations. When duplicate studies were retrieved, studies involving more patients or that were conducted most recently were chosen over those with fewer patients or those conducted earlier. A flow diagram of the study selection process is presented in Figure 1.

Quality assessment

According to a critical review checklist issued by the Dutch Cochrane Centre and proposed by MOOSE, we systematically assessed the quality of all studies included in the meta-analysis (Stroup et al., 2000). The key points of the current checklist included: 1) clear definition of study population and their disease; 2) clear definition of mutations and the method of detection; 3) clear definition of each subgroup according to grade or stage; 4) clear definition of outcome in survival studies; and 5) follow-up of sufficient duration. The classification of tumor grade was performed using the World Health Organization (WHO) grading system. LMPN, G1, and G2 were considered low-grade tumor; G3 and all other higher grades were considered high-grade tumor. Pathological stages were divided using the tumor-node-metastasis (TNM) classification. LMPN, CIS, pTa, and pT1 were considered early-stage, and T2, T3, and T4 were considered late-stage BC.
Data extraction and conversion

The following elements were included among the extracted data elements in this review: 1) publication details: first author’s last name, year of publication, and country of origin of the studied population; 2) characteristics of the studied population: sample size, age, gender ratio, stage of disease, and grade of disease; 3) sample size of each group; 4) risk ratio (RR) of \textit{FGFR3} mutation in low-grade or early-stage disease; 5) hazard ratio (HR) of mutant \textit{FGFR3} for survival. RRs were calculated using standard methods, so that the frequency of \textit{FGFR3} mutations in low-grade and early-stage individuals was divided by its frequency in high-grade and late-stage BC individuals (Borenstein et al., 2009). HRs were collected directly from the articles or were calculated using Kaplan-Meier survival curves and previously described methods (Parmar et al., 1998).

Statistical analysis

A test of heterogeneity of combined HRs was conducted using the Cochran Q test and Higgins I-squared statistic. P values less than 0.05 were considered to be significant. A random-effect model (DerSimonian and Laird method) was used if heterogeneity was observed ($P < 0.05$). Otherwise, the fixed-effect model was used. Publication bias was evaluated using the funnel plot with the Egger bias indicator test. All analyses were conducted using the Stata: Data Analysis and Statistical Software V10.1 (http://www.stata.com).

RESULTS

One hundred and seventy-two records were identified from a primary literature
search in PubMed. After manually screening the titles, abstracts, and key data, 109 studies were excluded because they were review articles, letters, not written in English, laboratory studies, or were irrelevant to the current analysis. Of the 63 reports selected for detailed evaluation, 33 were excluded as duplications or because they lacked key data. The final meta-analysis was carried out on the remaining 30 studies (Billerey et al., 2001; Kimura et al., 2001; Bakkar et al., 2003; Rieger-Christ et al., 2003; van Rhijn et al., 2003, 2004; Hernández et al., 2005; Jehar et al., 2005; van der Aa et al., 2005; Wallerand et al., 2005; Hernández et al., 2006; Lindgren et al., 2006; Tomlinson et al., 2007; van Oers et al., 2007; Burger et al., 2008; Junker et al., 2008; Eltze et al., 2009; Ouerhani et al., 2009; van Oers et al., 2009; Zieger et al., 2009; Bakkar et al., 2010; Bodoor et al., 2010; Kompier et al., 2010; Miyake et al., 2010; van Rhijn et al., 2010; Al-Ahmadie et al., 2011; Dodurga et al., 2011; Serizawa et al., 2011; Sjödahl et al., 2011; van Rhijn et al., 2012). Twenty-five of the studies (Table 1A) investigated the association between \textit{FGFR3} mutations and grade or stage, while the other 13 studies (Table 1B) investigated the prognostic value of \textit{FGFR3} mutations for BC.

The main features of the eligible studies are summarized in Table 1A and B. We collected data from 30 studies in total, which included data obtained from 5025 participants from Denmark, France, Germany, Japan, Jordan, the Netherlands, Spain, Sweden, Tunisia, Turkey, the United Kingdom, and the United States. As shown in Table 2, of all the studies that evaluated either grade or stage, 24 studies (N = 3999) evaluated grade and 18 studies (N = 2491) evaluated stage. Of the survival studies, 9 (N = 2015) analyzed disease-free survival (DFS), recurrence-free survival (RFS), or PFS. Five studies (N = 1579) examined DSS. All studies recruited patients with bladder cancer or urothelial carcinoma, and three studies included only patients with non-muscle-invasive BC. The methods used for identifying mutants included SNaPshot, polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP), sequencing, denaturing high-performance liquid chromatography (DHPLC), and PCR-restricted fragment length polymorphism (RFLP). Mutations were identified mainly on exons 7, 10, and 15. The point mutations S249C (C746G) and Y375C (A1124G) were especially common.

Among studies that evaluated either grade or stage, there appeared to be some heterogeneity between \textit{FGFR3} mutations and wild-type (P < 0.05). For this reason, a random model was used to calculate a pooled RR and its 95%CI.

We found the frequency of \textit{FGFR3} mutations to be significantly higher among low-grade and early-stage BC groups, which showed pooled RR = 2.948 (95%CI = 2.357-3.688) for grade (Figure 2A) and RR = 2.845 (95%CI = 2.145-3.773) for stage (Figure 2B). Considering that BC patients with low-grade or early-stage conditions tend to benefit from better survival rates, we also analyzed the association between \textit{FGFR3} mutations and survival. Among studies that evaluated DFS, PFS, or RFS, the pooled HR = 0.561 (95%CI = 0.405-0.779) (Figure 2C). For studies that evaluated DSS, the combined HR = 0.363 (95%CI = 0.266-0.496) (Figure 2D). These results indicated that \textit{FGFR3} mutations might indicate favorable outcomes for BC.

Finally, the publication bias of the included studies was evaluated using funnel plots and the Egger test. As shown in Figure 3 and Table 2, two of the four meta-analyses showed no publication bias (P > 0.05), but the others did (P < 0.05).
Table 1. Meta-analysis of bladder cancer.

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Number of subjects</th>
<th>Age (years)</th>
<th>Male (%)</th>
<th>Disease</th>
<th>Mutant</th>
<th>Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Ahmadie et al., 2011</td>
<td>U.S.</td>
<td>245</td>
<td>68.6</td>
<td>75.6</td>
<td>UC</td>
<td>Y375C, S249C, etc.</td>
<td>MS, sequencing</td>
</tr>
<tr>
<td>Bakkar et al., 2003</td>
<td>France</td>
<td>81</td>
<td>64</td>
<td>-</td>
<td>UC</td>
<td>exons (7, 10, and 15)</td>
<td>DHPLC, sequencing</td>
</tr>
<tr>
<td>Bakkar et al., 2010</td>
<td>France</td>
<td>170</td>
<td>64</td>
<td>100.0</td>
<td>BC</td>
<td>S249C, Y375C, A248C, etc.</td>
<td>SNaPshot</td>
</tr>
<tr>
<td>Billerey et al., 2001</td>
<td>France, Netherlands</td>
<td>132</td>
<td>-</td>
<td>-</td>
<td>BC</td>
<td>exons (7, 10, 15, and 19)</td>
<td>PCR</td>
</tr>
<tr>
<td>Bodoor et al., 2010</td>
<td>Jordan</td>
<td>121</td>
<td>63</td>
<td>87.6</td>
<td>BC</td>
<td>exons (7, 10, and 15)</td>
<td>PCR</td>
</tr>
<tr>
<td>Burger et al., 2008</td>
<td>Germany, Netherlands</td>
<td>221</td>
<td>68</td>
<td>77.0</td>
<td>NMI-UC</td>
<td>S249C, Y375C, R248C</td>
<td>SNaPshot</td>
</tr>
<tr>
<td>Dodurga et al., 2011</td>
<td>Turkey</td>
<td>56</td>
<td>65.5</td>
<td>87.5</td>
<td>BC</td>
<td>A248C, S249C, G372C, T375C</td>
<td>PCR-RFLP, sequencing</td>
</tr>
<tr>
<td>Hernández et al., 2006</td>
<td>Spain</td>
<td>764</td>
<td>68</td>
<td>87.0</td>
<td>NMI-UC</td>
<td>exons (7 and 10)</td>
<td>PCR, sequencing</td>
</tr>
<tr>
<td>Jehar et al., 2005</td>
<td>UK</td>
<td>98</td>
<td>-</td>
<td>-</td>
<td>UC</td>
<td>exons (7, 10, and 15)</td>
<td>SSCP, sequencing</td>
</tr>
<tr>
<td>Junker et al., 2008</td>
<td>Germany</td>
<td>92</td>
<td>-</td>
<td>-</td>
<td>BC</td>
<td>Y375C, G372C, R248C, etc.</td>
<td>SNaPshot</td>
</tr>
<tr>
<td>Kimura et al., 2001</td>
<td>Japan</td>
<td>81</td>
<td>65.6</td>
<td>86.4</td>
<td>BC</td>
<td>exons (7, 10, and 15)</td>
<td>RFLP, SSCP, sequencing</td>
</tr>
<tr>
<td>Kompier et al., 2010</td>
<td>Netherlands</td>
<td>257</td>
<td>65.7</td>
<td>75.0</td>
<td>BC</td>
<td>exons (7, 10, and 15)</td>
<td>SNaPshot</td>
</tr>
<tr>
<td>Lindgren et al., 2006</td>
<td>Sweden</td>
<td>75</td>
<td>-</td>
<td>-</td>
<td>BC</td>
<td>exons (7, 10, 13, and 15)</td>
<td>PCR, sequencing</td>
</tr>
<tr>
<td>Miyake et al., 2010</td>
<td>Japan</td>
<td>45</td>
<td>63</td>
<td>77.8</td>
<td>NMI-BC</td>
<td>exons (7, 10, and 15)</td>
<td>PCR, sequencing</td>
</tr>
<tr>
<td>Ouerhani et al., 2009</td>
<td>Tunisia</td>
<td>90</td>
<td>66.86</td>
<td>87.7</td>
<td>BC</td>
<td>exons (7, 10, and 15)</td>
<td>PCR, SNaPshot</td>
</tr>
<tr>
<td>Rieger-Christ et al., 2003</td>
<td>USA</td>
<td>192</td>
<td>67.16</td>
<td>78.1</td>
<td>BC</td>
<td>exons (7, 10, and 15)</td>
<td>PCR, sequencing</td>
</tr>
<tr>
<td>Serizawa et al., 2011</td>
<td>Denmark</td>
<td>105</td>
<td>70.2</td>
<td>86.7</td>
<td>BC</td>
<td>S249C, Y375C, R248C, etc.</td>
<td>PCR</td>
</tr>
<tr>
<td>Sjödahl et al., 2011</td>
<td>Sweden</td>
<td>145</td>
<td>-</td>
<td>20.0</td>
<td>UC</td>
<td>exons (7, 10, and 15)</td>
<td>PCR</td>
</tr>
<tr>
<td>Tomilson et al., 2007</td>
<td>UK</td>
<td>158</td>
<td>71.7</td>
<td>64.6</td>
<td>BC</td>
<td>exons (7, 10, and 15)</td>
<td>PCR, sequencing</td>
</tr>
<tr>
<td>van Oers et al., 2007</td>
<td>Germany</td>
<td>208</td>
<td>70</td>
<td>75.0</td>
<td>BC</td>
<td>S249C, Y375C, R248C, etc.</td>
<td>SNaPshot</td>
</tr>
<tr>
<td>van Oers et al., 2009</td>
<td>France</td>
<td>117</td>
<td>70</td>
<td>68.0</td>
<td>BC</td>
<td>S249C, Y375C, R248C, etc.</td>
<td>SNaPshot</td>
</tr>
<tr>
<td>van Rhijn et al., 2003</td>
<td>Netherlands</td>
<td>286</td>
<td>65.7</td>
<td>76.0</td>
<td>UCC</td>
<td>exons (7, 10, and 15)</td>
<td>PCR-SSCP, sequencing</td>
</tr>
<tr>
<td>van Rhijn et al., 2012</td>
<td>Netherlands</td>
<td>132</td>
<td>68.7</td>
<td>82.0</td>
<td>BC</td>
<td>exons (7, 10, and 15)</td>
<td>SNaPshot, IHC</td>
</tr>
<tr>
<td>Wallen et al., 2005</td>
<td>France</td>
<td>110</td>
<td>67</td>
<td>-</td>
<td>BC</td>
<td>exons (7, 10, and 15)</td>
<td>DHPLC, PCR, sequencing</td>
</tr>
<tr>
<td>Zieger et al., 2009</td>
<td>Denmark</td>
<td>218</td>
<td>-</td>
<td>-</td>
<td>BC</td>
<td>exons (7 and 10)</td>
<td>Sequencing, SNP-microarray, qPCR</td>
</tr>
</tbody>
</table>

Characteristics of grade and stage studies included in the meta-analysis. UC = carcinoma; UCC = urothelial cell carcinoma; BC = bladder cancer; NMI = non-muscle-invasive; MS = mass spectrometry; DHPLC = denatured high-performance liquid chromatography; RFLP = restriction fragment length polymorphism; SSCP = single-strand conformation polymorphism; qPCR = quantitative real-time polymerase chain reaction; SNP = single-nucleotide polymorphism; - = not available.

Continued on next page
Table 1. Continued.

<table>
<thead>
<tr>
<th>Study/Year</th>
<th>Population</th>
<th>Number of subjects</th>
<th>Age (years)</th>
<th>Male (%)</th>
<th>Disease</th>
<th>Mutant</th>
<th>Assay</th>
<th>Follow-up (m)</th>
<th>Survival</th>
<th>HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Ahmadie et al., 2011</td>
<td>U.S.A</td>
<td>245</td>
<td>68.6</td>
<td>75.6</td>
<td>UC</td>
<td>Y375C, S249C, etc.</td>
<td>MS, sequencing</td>
<td>15.6</td>
<td>PFS</td>
<td>SC</td>
</tr>
<tr>
<td>Bodoor et al., 2010</td>
<td>Jordan</td>
<td>121</td>
<td>63</td>
<td>87.6</td>
<td>BC</td>
<td>exons (7, 10, and 15)</td>
<td>SNaPshot</td>
<td>30</td>
<td>DFS</td>
<td>SC</td>
</tr>
<tr>
<td>Burger et al., 2008</td>
<td>Germany, Netherlands</td>
<td>221</td>
<td>68</td>
<td>77.0</td>
<td>NMI-UCC</td>
<td>Y375C, R248C</td>
<td>SNaPshot</td>
<td>35</td>
<td>PFS</td>
<td>SC</td>
</tr>
<tr>
<td>Elze et al., 2009</td>
<td>Germany</td>
<td>154</td>
<td>70</td>
<td>71.4</td>
<td>UC</td>
<td>S249C, Y375C, R248C</td>
<td>SNaPshot</td>
<td>67.5</td>
<td>RFS</td>
<td>TR</td>
</tr>
<tr>
<td>Hernández et al., 2005</td>
<td>Spain</td>
<td>119</td>
<td>67</td>
<td>86.6</td>
<td>BC</td>
<td>exons (7, 10, and 15)</td>
<td>PCR, sequencing</td>
<td>54</td>
<td>DFS</td>
<td>SC</td>
</tr>
<tr>
<td>Hernández et al., 2006</td>
<td>Spain</td>
<td>764</td>
<td>68</td>
<td>87.0</td>
<td>BC</td>
<td>exons (7, 10, and 15)</td>
<td>PCR, sequencing</td>
<td>62.6</td>
<td>PFS, DSS</td>
<td>SC</td>
</tr>
<tr>
<td>van der Aa et al., 2005</td>
<td>Netherlands</td>
<td>63</td>
<td>68</td>
<td>-</td>
<td>UCC</td>
<td>-</td>
<td>PCR-SSCP</td>
<td>55</td>
<td>PFS</td>
<td>TR</td>
</tr>
<tr>
<td>van Oers et al., 2007</td>
<td>Germany</td>
<td>208</td>
<td>70</td>
<td>75.0</td>
<td>BC</td>
<td>S249C, Y375C, R248C, etc.</td>
<td>SNaPshot</td>
<td>75</td>
<td>DSS</td>
<td>TR</td>
</tr>
<tr>
<td>van Oers et al., 2009</td>
<td>UK, France</td>
<td>117</td>
<td>70</td>
<td>68.0</td>
<td>BC</td>
<td>S249C, Y375C, R248C, etc.</td>
<td>SNaPshot</td>
<td>216</td>
<td>DSS</td>
<td>SC</td>
</tr>
<tr>
<td>van Rhijn et al., 2003</td>
<td>Netherlands</td>
<td>286</td>
<td>65.7</td>
<td>76.0</td>
<td>UCC</td>
<td>exons (7, 10, and 15)</td>
<td>PCR-SSCP, sequencing</td>
<td>66</td>
<td>PFS</td>
<td>SC</td>
</tr>
<tr>
<td>van Rhijn et al., 2004</td>
<td>Netherlands</td>
<td>260</td>
<td>67.2</td>
<td>75.0</td>
<td>UCC</td>
<td>exons (7, 10, and 15)</td>
<td>PCR-SSCP</td>
<td>180</td>
<td>DSS</td>
<td>SC</td>
</tr>
<tr>
<td>van Rhijn et al., 2010</td>
<td>Netherlands</td>
<td>230</td>
<td>65.1</td>
<td>76.0</td>
<td>BC</td>
<td>exons (7, 10, and 15)</td>
<td>SSCP, sequencing</td>
<td>103</td>
<td>DSS</td>
<td>SC</td>
</tr>
<tr>
<td>van Rhijn et al., 2012</td>
<td>Netherlands</td>
<td>132</td>
<td>68.7</td>
<td>82.0</td>
<td>BC</td>
<td>exons (7, 10, and 15)</td>
<td>SNaPshot</td>
<td>78</td>
<td>PFS</td>
<td>SC</td>
</tr>
</tbody>
</table>

Characteristics of survival studies included in the meta-analysis. UC = carcinoma; UCC = urothelial cell carcinomas; BC = bladder cancer; MS = mass spectrometry; SSCP = single-strand conformation polymorphism; qPCR = quantitative real-time polymerase chain reaction; SNP = single-nucleotide polymorphism; DFS = disease-free survival; PFS = progression-free survival; RFS = recurrence-free survival; DSS = disease-specific survival; TR = text reported; SC = survival curve; (-) = not available.
DISCUSSION

This systemic review and meta-analysis revealed that a higher frequency of *FGFR3* mutations was associated with lower histological grade and lower clinical stage in BC patients, with RR values of 2.948 and 2.845, respectively. Furthermore, *FGFR3* mutations predicted better survival, with respect to both PFS and DSS.

These results confirmed the clinical value of *FGFR3* mutations in bladder cancer patients. Nonetheless, our conclusions must be interpreted with caution. The current meta-
analysis has several limitations. First, marked heterogeneity was observed in three of the four distinct groups of subjects. The heterogeneity of the population was most likely due to differences in the baseline characteristics of patients (race, age, and tumor stage), method of detecting mutations, duration of follow-up, and other parameters. We attempted to minimize the effects of these differences by applying a random-effect model. Publication bias was detected in the stage and DFS/PFS/RFS meta-analyses, and this cannot be adequately overcome with any statistical techniques currently available.

Previous experimental studies established a clear link between the presence of FGFR3-activating mutations and tumorigenesis. Mouse fibroblast NIH-3T3 cells transfected with an S249C FGFR3 mutant construct showed characteristics reminiscent of tumorigenesis, such as rapid proliferation, colony formation, and tumor xenograft formation in mice (Bernard-Pierrot et al., 2006). In the UC cell line MGH-U3, which contains a Y375C-activating mutation, cell growth and proliferation were suppressed by an FGFR inhibitor and by an FGFR3 knockdown (Bernard-Pierrot et al., 2006). S249C, Y375C, and K652E mutations in FGFR3 were found to phosphorylate Plegamma1 and to induce morphological transformation, cell

Figure 3. Funnel plots for studies included in the four meta-analyses. Plots are arranged as follows: A. Grade; B. Stage; C. DFS/PFS/RFS; D. DSS. For abbreviations, see legend to Figure 1.
proliferation, and anchorage-independent growth (Di Martino et al., 2009). Mutational activation with constitutive receptor dimerization and overexpression of wild-type FGFR3 are two distinct mechanisms that may account for FGFR3-dependent tumorigenesis in UC. FGFR3 mutations are observed more frequently in lower-grade and earlier-stage tumors, and in cases that ultimately show favorable clinical outcomes, whereas the overexpression of wild-type receptors is associated with higher-grade and later-stage tumors and with worse outcomes (Iyer and Milowsky, 2013). Further studies should be conducted to evaluate the involvement of FGFR3-mediated downstream signaling for cell growth and proliferation and ultimate therapeutic tractability of these two mechanisms.

Currently, the molecular analysis of BC is one of the most popular fields in both clinical studies and scientific research. These molecular markers may allow more complete characterization of individual urothelial neoplasms than is currently possible using histological evaluation alone. To date, a variety of molecular markers, such as FGFR3, EGFR, pRB, p53, Ki-67, VEGF, and CK20, have been found to be associated with tumor grade and staging, recurrence, progression, and survival (Bryan et al., 2010; Cheng et al., 2011). These markers may participate in the regulation of the cell cycle, cell proliferation, signal transduction, apoptosis, extracellular matrix modulating, and angiogenesis (Cheng et al., 2011). In this meta-analysis, FGFR3 mutations were found to be more frequent in BC patients with low-grade or early-stage conditions. More importantly, the mutant FGFR3 was found to predict better outcomes. Overexpression of EGFR has been shown to be associated with late-stage and high-grade tumor. Overexpression of pRB has been shown to be associated with poor clinical outcomes in BC. p53 mutations are associated with high grade, late stage, and poor clinical outcome. Overexpression of Ki-67, VEGF, and CK20 are related to tumor grade, stage, progression, and recurrence. In addition to the markers listed above, p21, Her-2, Bax/bcl-2, and CD40 also merit further research (Youssef et al., 2009). For accurate grading, staging, and prediction of the outcome of BC, more clinical studies must be conducted using multiple assays and combinations of several urinary biomarkers.

In summary, FGFR3 mutations were found to be significantly associated with low grade and early stage in BC patients, and with better survival.

ACKNOWLEDGMENTS

Research supported by the National Natural Science Foundation of China (NSFC #30800401). We would like to thank Dr. Chengjin Huang of Peking Union Medical College Hospital and Mr. Shujian Cui of East China Normal University.

Conflicts of interest

The authors declare no conflict of interest.

REFERENCES

FGFR3 and bladder cancer

