Isolation and characterization of the anthocyanidin genes \textit{pal}, \textit{f3h} and \textit{dfr} of \textit{Scutellaria viscidula} (Lamiaceae)

W. Lei1,2, R.X. Yao3, X.H. Kang4, S.H. Tang1, A.M. Qiao3 and M. Sun1

1Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Science, Southwest University, Chongqing, China
2College of Life Science, Sun Yat-Sen University, Guangzhou, China
3College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
4College of Life Science and Engineering, Southwest University of Science and Technology, Sichuan, China

Corresponding author: M. Sun
E-mail: jwcsm@swu.edu.cn

Received April 5, 2011
Accepted August 31, 2011
Published November 22, 2011
DOI http://dx.doi.org/10.4238/2011.November.22.7

ABSTRACT. Anthocyanidin is a group of flavonoid compounds used as a vegetable pigment and plays an important role in flower coloration and environmental adaptations of the Chinese ornamental plant \textit{Scutellaria viscidula}. We determined the cDNA sequences of phenylalanine ammonia-lyase (SvPAL), flavanone 3-hydroxylase (SvF3H) and dihydroflavonol 4-reductase (SvDFR) genes in \textit{S. viscidula}. Comparative analysis showed that the protein products of these three genes did not have a transit peptide at their N-terminal portion, which indicated that these enzymes were directly involved in the substrate conversion in the cytoplasmic matrix. Bioinformatic analysis further revealed that \textit{Svpal}, \textit{Svf3h} and \textit{Svdfr} were the members of flavonoid biosynthetic genes with highly conserved motifs. Based on phylogenetic tree analysis, it appears that PAL, F3H or DFR from
different plants might have originated from the same ancestor. This study can help to map and regulate the important stages involved in anthocyanidin biosynthesis by genetic engineering to diversify flower color and improve the ornamental value of *S. viscidula*.

Key words: *Scutellaria viscidula*; Phenylalanine ammonia-lyase; Flavanone 3-hydroxylase; Dihydroflavonol 4-reductase; Anthocyanidin

INTRODUCTION

Skullcap, belonging to the family *Labiate*, is a perennial herb and is located mainly in Asia. The plant has received increasing attention due to its significant amounts of various flavonoids. For example, the roots of skullcap contain flavone compounds such as baicalin, baicalein, wogonoside and wogonin, which are widely used to treat inflammatory and bacterial diseases in traditional Chinese medicine (Yu et al., 1984). Moreover, skullcap shows diverse colors including yellow, blue and purple in different breeds due to the presence of anthocyanidin compounds in the flower, and, thus, is widely used as ornamental plants as well. *Scutellaria viscidula* Bunge, one of the representative species of *Scutellaria* genus, is distributed in North China and increasingly employed in gardening practices (Tian et al., 2007).

Anthocyanidin exhibits some important physiological functions to meet environment challenges such as flower coloration, UV protection, and disease defense. Anthocyanidin is synthesized via the phenylpropanoid pathway, of which a majority of enzymes have previously been determined (Figure 1) (Uddin et al., 2004; Butelli et al., 2008). Furthermore, numerous structural genes and regulatory genes have been isolated and obtained (Jack et al., 2009; Zhou et al., 2010). Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) is the first key enzyme involved in this pathway and responsible for the conversion of L-phenylalanine to cinnamic acid, which links the primary and secondary metabolism (Li et al., 2001). As described for the first time in *Horden vulgare* in 1961, *pal* genes have been cloned and identified from many horticulture plants species such as *Petroselinum crispum*, *Nicotiana tabacum*, *Daucus carota*, *Bambusa oldhamii*, and *Pisum sativum*, etc. Flavanone 3-hydroxylase (F3H, EC 1.14.11.9) is the core enzyme regulating a metabolic flux shift into anthocyanidin pathway, with the purpose of converting (2S)-flavanones to (2R, 3R)-dihydroflavonols, the direct precursor of the flavonol biosynthesis (Holton and Comish, 1995). The first study on F3H resulted from *Matthiola incana*, and then numerous amounts of the enzyme genes were isolated and characterized from various horticulture plants including *Zea mays*, *Ginkgo biloba*, *Daucus carota*, *Persea americana* and *Perilla frutescens*. Dihydroflavonol 4-reductase (DFR, EC 1.1.1.219) a crucial enzyme in anthocyanidin metabolic system drives to conversion from (2R, 3R)-dihydroflavonols including dihydrokaempferol (DHK), dihydroquercetin (DHQ) or dihydromyricetin (DHM) into leucoanthocyanidins leucodelphinidin or leucocyanidin by stereospecific reduction reaction on C4 site (Vincent et al., 1997). The initial DFR cloning was reported by O’Reilly in *Zea mays* (O’Reilly et al., 1985). A series of DFR genes were then determined from *Ipomoea horsfalliae*, *Lycopersicon esculentum*, *Crataegus monogyna*, *Brassica juncea*, *Vaccinium macrocarpon*, etc. Moreover, earlier experimental results also showed the important roles of PAL, F3H and DFR in the control of flavonoids accumulation via a responding committed stage in the plant. For example, expression level of *pal* gene was significantly positively correlated with fruit
Anthocyanin in some horticultural plants (MacDonald and D’Cunha, 2007) while the inhibition of \(f3h\) gene expression by antisense suppression technique could modify flower color and fragrance (Zuker et al., 2002), whereas the \(dfr\) gene overexpression in the transgenic \(Petunia hvbrida\) led to generating a new flower color (Meyer et al., 1987).

Figure 1. Flavonoid biosynthetic pathway in \(Scutellaria\) cells.
Anthocyanidin accumulation and regulation in *S. viscidula* require synergistic expression of related genes encoding enzyme system involved in the core flavonoid biosynthesis pathway, such as PAL, 4-coumarate-CoA-ligase (4CL), chalcone synthase (CHS), F3H and DFR. Thus, cloning and determination of the enzyme genes are essential and helpful to elucidate this metabolic course. Nevertheless, this is still not clear except for CHS so far (Lei et al., 2010). To date, the full length of *pal*, *f3h* and *dfr* genes have been cloned and characterized as well as their corresponding putative proteins analyzed using various bioinformatic tools and methods. To the best of our knowledge, this is the first reported study on the isolation and analysis of these three genes in *S. viscidula*.

MATERIAL AND METHODS

Plant material and RNA extraction

Scutellaria viscidula Bunge was cultured in the planting garden of Southwest University, Chongqing, China. Approximately 20 g *S. viscidula* tissue powdered in liquid nitrogen and the total cellular RNA was extracted with TRIZol™ reagent according to manufacturer instructions (Tiangen, China), then quantified by spectrophotometry and investigated integrity by agarose gel electrophoresis and finally the total RNA was stored in -70°C prior to use for cDNA manipulation.

Cloning of the full-length cDNA of the target genes PAL, F3H and DFR

After reverse transcription and subsequent RnaseH treatment, the first strand cDNA were synthesized from 5 μg total RNA with an Oligo dT-Adaptor Primer in RNA PCR Kit (AMV) Ver. 3.0 (TAKARA, Tokyo, Japan). This cDNA was used as templates for polymerase chain reaction (PCR). Deoxirribonucleotide primers pairs (dfpal and drpal, dfsh and drf3h, dfdf and drfdr, Table 1) were designed and synthesized based on the conserved regions of nucleotide sequences of *pal*, *f3h* and *dfr* genes in some plant, respectively. The reverse transcription PCR (RT-PCR) reaction was implemented to obtain the core fragment based on the following program: denaturing the cDNA at 94°C for 3 min, following 34 cycles of amplification (94°C for 30 s, Tm for 30 s and 72°C for 1 min), and a final extension at 72°C for 10 min. After detection, purification and extraction, the PCR product of each target gene was cloned into pMD18-T vector (Promega, USA), respectively. After sequencing, the target fragment sequences were confirmed to be highly identical to other corresponding genes using the Blastn search. According to the core fragment, the gene-specific primers (GSP) were designed to elongate the upstream and downstream parts by rapid amplification of cDNA ends (RACE). The SMART™ RACE cDNA Amplification Kit (Clontech, USA) was used to synthesize two separate cDNA populations: 3ꞌ-RACE-ready and 5ꞌ-RACE-ready cDNA which were employed for the templates of 3ꞌRACE and 5ꞌRACE, respectively.

Aiming at each target gene, two 3ꞌ-GSP (svpal3-1 and svpal3-2, svf3h3-1 and svf3h3-2, svdf3h-2 and svdf3h-3; Table 1) and the universal primers (UPM and NUP provided by the kit, Table 1) the nested RACE PCR amplification of 3ꞌ-RACE was performed For the first action, 3ꞌ-GSP-1 and UPM were used with 3ꞌ-RACE-ready cDNA as a template, while for the second one, 3ꞌ-GSP-2 and NUP were used with the templates from the previous PCR reac-
In a similar manner, two 5ꞌ-GSP (svpal5-1 and svpal5-2, svf3h5-1 and svf3h5-2, svdfr5-1 and svdfr5-2; Table 1) and the universal primers (UPM and NUP provided by the kit, Table 1) were performed. The nested PCR procedures were accomplished according to the protocol (Advantage™ 2 PCR Kit, Clontech, USA): 1 min at 95°C followed by 30 cycles (30 s at 94°C and 1 min at 58°C), and finally 2 min at 72°C for an extension. By 3ꞌ-RACE and 5ꞌ-RACE, both ends of each target gene were respectively sequenced and then collected. By aligning and assembling the sequences of the core fragment, 3ꞌ-RACE and 5ꞌ-RACE on ContigExpress (Vector NTI Suite 8.0), the full-length cDNA sequences of the three target genes were spliced and deduced in silico. The physical full-length cDNA was subsequently amplified via RT-PCR reaction using a pair of primers (fsvpal and rsvpal, fsvf3h and rsvf3h, fsvdfr and rsvdfr; Table 1). The PCR procedure was conducted under the following conditions: 3 min at 94°C, 34 cycles (30 s at 94°C, 30 s at 55°C, and 2 min at 72°C) and 10 min at 72°C. The amplification product was purified and subcloned into pMD18-T vector (Promega, USA), later introduced into competent Escherichia coli strain DH5α cells, followed by sequencing. In this experiment, the independent PCR amplifications and sequencing of each target gene were repeated thrice to confirm the experimental results. The full-length cDNAs of Svpal, Svf3h and Svdfr were cloned successfully.

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>dfpal</td>
<td>5ꞌ-AAGGC(G/T)AG(C/T)AGTGA(C/T)TGGGT(C/G)A-3ꞌ</td>
</tr>
<tr>
<td>d MPL</td>
<td>5ꞌ-AAACAA(G/A)GC(C/T)TT(G/A)CA(C/T)TGGTG(T/A)AA-3ꞌ</td>
</tr>
<tr>
<td>svpal3-1</td>
<td>5ꞌ-AAGTTATGAATGGGAAGCCTGAG-3ꞌ</td>
</tr>
<tr>
<td>svpal3-2</td>
<td>5ꞌ-CGAGAGGGAGATCAACTCGGTG-3ꞌ</td>
</tr>
<tr>
<td>svpal5-1</td>
<td>5ꞌ-CACGGAGGGGCAAGCATGGAGT-3ꞌ</td>
</tr>
<tr>
<td>svpal5-2</td>
<td>5ꞌ-GGTTAGCGCCATAGCTGTCAGTCC-3ꞌ</td>
</tr>
<tr>
<td>fsvpal</td>
<td>5ꞌ-ACGCCGGGAGGATTCCTCTCCT-3ꞌ</td>
</tr>
<tr>
<td>rsvpal</td>
<td>5ꞌ-ACGAAATAGAAGTGACTGAGAT-3ꞌ</td>
</tr>
<tr>
<td>dff3h</td>
<td>5ꞌ-CA(G/A)GT(G/A/T)GTT(G/A)ATCA(T/C)GG(A/G)GT(T/C)GA-3ꞌ</td>
</tr>
<tr>
<td>dff3h</td>
<td>5ꞌ-TGGATCACTTGCTGCAACAGAC-3ꞌ</td>
</tr>
<tr>
<td>svf3h3-1</td>
<td>5ꞌ-CTCCAGTAGTTGGCAGGGCAGG-3ꞌ</td>
</tr>
<tr>
<td>svf3h3-2</td>
<td>5ꞌ-CTCGAGATGTACGGGGCCCCTG-3ꞌ</td>
</tr>
<tr>
<td>svf3h5-1</td>
<td>5ꞌ-ACCGCAGCACAGAAAAAAA-3ꞌ</td>
</tr>
<tr>
<td>svf3h5-2</td>
<td>5ꞌ-GATCTTCATTGGGACTATCATT-3ꞌ</td>
</tr>
<tr>
<td>fsvf3h</td>
<td>5ꞌ-GATCCGGGAGGACCCCATCATTGA-3ꞌ</td>
</tr>
<tr>
<td>rsvf3h</td>
<td>5ꞌ-GATCCGGGAGGACCCCATCATTGA-3ꞌ</td>
</tr>
<tr>
<td>dfdfr</td>
<td>5ꞌ-GA(T/C)CC(T/C)GGAAATGTA(G/A)ATTA(T/C)AA-3ꞌ</td>
</tr>
<tr>
<td>dffdfr</td>
<td>5ꞌ-CT(C/T)AT(G/A)ACAT(T/G)CACT(A)A(C/T)TGCA(T/C)TCTTGG-3ꞌ</td>
</tr>
<tr>
<td>svdfr3-1</td>
<td>5ꞌ-ACGCAGCCAACTCCCTTGGCATC-3ꞌ</td>
</tr>
<tr>
<td>svdfr3-2</td>
<td>5ꞌ-ATCCACACGGCCGACTTACCATCA-3ꞌ</td>
</tr>
<tr>
<td>svdfr5-1</td>
<td>5ꞌ-ATCCACACGGCCGACTTACCATCA-3ꞌ</td>
</tr>
<tr>
<td>svdfr5-2</td>
<td>5ꞌ-ATCCACACGGCCGACTTACCATCA-3ꞌ</td>
</tr>
<tr>
<td>fsvdfr</td>
<td>5ꞌ-ACGCCGGGAGGACCCCATCATTGA-3ꞌ</td>
</tr>
<tr>
<td>rsvdfr</td>
<td>5ꞌ-ACGCCGGGAGGACCCCATCATTGA-3ꞌ</td>
</tr>
<tr>
<td>UPM</td>
<td>Long: 5ꞌ-CTAATCAATACGTCACTATAGGGCAACGAGCTATCAACGAGCAGAT-3ꞌ</td>
</tr>
<tr>
<td></td>
<td>Short: 5ꞌ-CTAATCAATACGTCACTATAGGGCAACGAGCTATCAACGAGCAGAT-3ꞌ</td>
</tr>
</tbody>
</table>

dfpal = deoxyribonucleotide forward pal, df f3h = deoxyribonucleotide forward f3h, df dfr = deoxyribonucleotide forward dfr; d MPL = deoxyribonucleotide reverse pal, d f3h = deoxyribonucleotide reverse f3h, dffdfr = deoxyribonucleotide reverse dfr; svpal = Scutellaria viscidula pal; svf3h = Scutellaria viscidula f3h; svdfr = Scutellaria viscidula dfr; 3-1, 3-2, 5-1 and 5-2 (3 and 5 refer to 3ꞌend and 5ꞌend, respectively; 1 and 2 refer to the first and the second, respectively); Fsvpal = forward svpal, Fsvf3h = forward svf3h, Fsvdfr = forward svdfr; Rsvpal = forward svpal, Rsvf3h = forward svf3h, Rsvdfr = forward svdfr, NUP = nested universal primer, UPM = universal primer mix.
Comparative and bioinformatic analysis

The nucleic acid sequences of the target genes (Svpal, GenBank® accession No. FJ432698; SvF3h, GenBank® accession No. FJ432699; and Svdfr, GenBank accession No. FJ605512) and corresponding amino acid sequences of the proteins (SvPAL, SvF3H and SvDFR) were calculated and analyzed with bioinformatics tools. Comparative bioinformatic analysis was done online at the NCBI (http://www.ncbi.nlm.nih.gov) and Expasy websites (http://www.expasy.org). The open reading frame (ORF) was predicted by ORF Finder. Multiple sequence alignments of the amino acid sequences of the target gene and the corresponding ones from other plant species were made with Vector NTI 8.0 using default parameters (Lei et al., 2009). Subcellular location was predicted with the TargetP 1.1 server (Ehrbar et al., 2004). Cellular function, transmembrane helices and hydrophobicity of the protein were predicted with the ProtFun 2.2 server (Jensen et al., 2002, 2003), TMHMM server v.2.0 (Ikeda et al. 2002) and ProtScale (Kyte and Doolittle 1982), orderly. Protein motifs were identified with PrositeScan (Combet et al. 2000). The target protein and the corresponding ones from other plants were aligned with ClustalX (Thompson et al., 1997), subsequently a phylogenetic tree was constructed by the Neighbor-Joining method with 1000 replicates, and the reliability of each node was established based on bootstrap calculations using the MEGA4.1 software (Kumar et al., 2001). Homology-based three-dimensional (3D) structural modeling of the target protein was done with Swiss-Modeling (Arnold et al., 2006) while WebLab ViewerLite 4.2 was used to display the 3D structure.

RESULTS AND DISCUSSION

Cloning of the full-length cDNA of the target genes PAL, F3H and DFR

The full-length cDNA sequence of SvPAL, SvF3H and SvDFR was cloned successfully and submitted into GenBank® database by the RT-PCR in combination with RACE technique. Firstly, the nucleotide acid sequence of Svpal was 2406 bp long, containing 2133 bp ORF encoding 711 amino acids, a 5ꞌ-untranslated region (UTR) of 128 bp long upstream from the start codon ATG, and a 142 bp 3ꞌ-UTR with a putative polyadenylation signal AATAA at a position 11 bp downstream from the stop codon TAG, as shown in Figure 2. Secondly, the full-length of Svf3h sequence was 1317 bp, in which there was 1050 bp ORF that encoded a 350 amino acid protein flanked by a 73 bp 5ꞌ-UTR and 191 bp 3ꞌ-UTR incidental 11 bp poly(A) tail (Figure 3). Thirdly, Svdfr gene consisted of 1283 bp nucleotides in total including 777 bp ORF encoding a 259 amino acid protein, 89 bp 5ꞌ-UTR and 414 bp 3ꞌ-UTR with the stop codon TAA (Figure 4). Finally, the target genes, which have been identified, were submitted to the GenBank® Database (Svpal, GenBank® accession No. FJ432698; SvF3h, GenBank accession No. FJ432699; and Svdfr, GenBank® accession No. FJ605512).

Molecular structures and physicochemical properties

Structural properties of Svpal, SvF3h and Svdfr and their encoding proteins are shown in Table 1. As they bring into play in different phases and under different reaction conditions, it is clear that there is a significant difference from each other on the nucleic acid and protein
Anthocyanidin genes of Scutellaria viscidula

However, a slight similarity was observed among the physicochemical properties of SvPAL, SvF3H and SvDFR, indicating their significant functional association with genetic conservation of anthocyanidin biosynthesis pathway.

Figure 2.

Full-length cDNA sequence and deduced amino acid sequence of SvPAL. The start codon (ATG) was boxed and the stop codon (TGA) was marked with asterisks, respectively. The coding sequence of Svpal is shown in capital letters and the 5ꞌ- and 3ꞌ-untranslated regions are shown in normal letters.
Figure 3. Full-length cDNA sequence and deduced amino acid sequence of SvF3H. The start codon (ATG) is boxed and the stop codon (TGA) is marked with asterisks, respectively. The coding sequence of SvF3H is shown in capital letters and the 5'– and 3'–untranslated regions are shown in normal letters.

Cytologic characterization and function domain investigation

The subcellular localization and transmembrane helix prediction suggested that all of SvPAL, SvF3H and SvDFR were localized in the cytoplasmic matrix without transit peptide and transmembrane topological structure, indicating that these enzymes directly drove the substrate conversion and the skullcap anthocyanidin biosynthesis, which exactly corresponded with the fact that flavonoids were synthesized in the cytoplasmic matrix (Hrazdina, 1992). In fact, it was previously revealed that PAL protein scattered in the cell matrix which was confirmed by electron microscopy observation (Jin et al., 1997).

After aligning SvPAL, SvF3H or SvDFR and the target amino acid sequences from other plant species, it was shown that the structural difference in the N-terminal domain exhibited the difference in their activity levels. Some highly conserved residues were found in the SvPAL sequence: S213, Y120, L148, N269, Q357, Y360, R363, F409, Q497 and 3, 5-dihydro-5-methyldiene-4H-imidazol-4-one (MIO), which were considered to be of significant importance for

Anthocyanidin genes of *Scutellaria viscidula* 3393

substrate binding, catalytic activity and LMIO formation (Xu et al., 2008). The mechanism was in agreement with the recent report from *Petroselinum crispum* research (Röther et al., 2002). In particular, SvPAL contained a conserved region named Ala-Ser-Gly triad, which can be converted autocatalytically, via internal cyclization and elimination of two water molecules, to the electrophilic prosthetic group MIO (Song and Wang, 2009) (Figure 5). As for

Figure 4. Full-length cDNA sequence and deduced amino acid sequence of SvDFR. The start codon (ATG) is boxed and the stop codon (TGA) is marked with asterisks, respectively. The coding sequence of *Svdfr* is shown in capital letters and the 5′- and 3′-untranslated regions are shown in normal letters.

SvF3H protein, three ferrous-binding domains (His^{229}, Asp^{227} and His^{282}), two 2-oxoglutarate binding regions (RXS motif: Arg^{292}, Ser^{294}), and five similar motifs for 2-ODD were scanned including motif 1 (66–81), motif 2 (149–151), motif 3 (215–219), motif 4 (220–239), motif 5 (278–294), and five similar motifs for 2-ODD, among which the motif 1, motif 4 and motif 5 had several different residues indicating they were relative to species specificity. Furthermore, strictly conserved motif 2 and motif 3 were reported to play important roles in the folding process of the polypeptide (Britsch et al., 1992, 1993; Lukacin and Britsch, 1997) (Figure 6). In addition, the SvDFR amino acid sequence exhibited a putative NADP binding site (27-47, VTGASGFIGSWIVMRLLQHGY) with a very high similarity as in the description of other DFRs. Furthermore, Ser^{145} residue was considered as the catalytic center, while Asn^{150} and Glu^{161} were associated with substrate specificity (James et al., 2002) (Figure 7). These relatively conserved domains exhibited such a high conservation to remain basically identical in almost all the plants species, especially S. viscidula, so that these domains were possibly closed related to the catalytic function, which suggested the functional existence and stabilization of SvPAL, SvF3H and SvDFR proteins.

Figure 5. Conserved domains of the target protein SvPAL, SvF3H and SvDFR.
Figure 6. Multiple alignment of amino acid sequences of SvPAL and other plant PALs. The identical sites are shown in white letters and black background; the conservative sites are shown in white letters and gray background; other sites are all shown in black letters and white background. The active sites residues are indicated in asterisk (*), and residues Ala-Ser-Gly forming MIO group are boxed in the alignment. The Database accession numbers of the sequences used for the multi-alignments: SmPAL (Salvia miltiorrhiza, GenPept accession No. ABR14606); BoPAL (Bambusa oldhamii, GenPept accession No. ACN62413); DcPAL (Daucus carota, GenPept accession No. BAA22367); IpPAL (Ipomoea batatas, GenPept accession No. BAA11459); NtPAL (Nicotiana tabacum, GenPept accession No. BAA22947), SvPAL (Scutellaria viscidula, GenPept accession No. FJ432698).

Some important motif patterns were obtained by scanning the amino acid sequences of SvPAL, SvF3H and SvDFR against PROSITE. Except four motifs in all the three enzymes, i.e. N-glycosylation site, Protein kinase C phosphorylation site, Casein kinase II phosphorylation site, and N-myristoylation site, one mutual motif existed in both SvF3H and SvDFR, i.e. cAMP- and cGMP-dependent protein kinase phosphorylation site. In fact, there was only one specific motif in every target protein, that is, phenylalanine and histidine ammonia-lyases signature existing in SvPAL, amidation site in SvF3H. In summary, these signatures play the important role in recognizing and binding between enzyme and its own substrate. Then, the tool CDD recognized the presence of conserved domains in these proteins, as shown in Figure 8, and a series of functional domains were detected, such as catalytic residues, substrate binding pocket, lyase class I like region, 2-oxoglutarate (2OG), Fe(II)-dependent oxygenase superfamily and putative dehydrogenase domain.
S. viscidula is a beautiful and valuable horticultural plant, and *pal*, *f3h* or *dfr* genes play a critical role in the anthocyanidin metabolic mechanism and genetic engineering. Investigation and elucidation of their genetic relationship and molecular evolution can help to deeply understand their roles. Based on the multiple alignments of protein sequences from twenty-seven plant species by ClustalX, a phylogenetic tree was constructed from various organisms including fungi, animals and plants with the Neighbor-Joining method (Figure 9). It is most intriguing that PALs, F3Hs or DFRs were derived from a collective ancestor and...
then differentiated gradually into different groups. At the evolutionary position, PAL, F3H and DFR from S. visscidula all belonged to plant groups, and were closer to other multicolored plants but farther than unicolor ones, manifesting that these key-regulation genes possessed a somewhat different expression to meet the diverse requirements of anthocyanidin function.

Figure 8. Multiple sequence alignment of SvDFR and other plant DFRs proteins. Identical sites are shown in white letters on a black background, conserved sites are shown in white letters on a gray background and other sites are shown in black letters on a white background. The highly conserved NADP binding site (VTGASFIGSWIVMRLLQHGY) is boxed. The catalytic center Ser145 and the substrate specificity related residues Asn150 and Glu161 are indicated with an asterisk (*). The database accession numbers of the sequences used in the alignment are: PcDFR (Pyrus communis, GenPept accession No. AAO39819), DcDFR (Daucus carota, GenPept accession No. AAD56578), GhDFR (Gossypium hirsutum, GenPept accession No. ACV72642), CmDFR (Crataegus monogyna, GenPept accession No. AAX16491), GeDFR (Gypsophila elegans, GenPept accession No. AAP13055), SvDFR (Scutellaria visscidula, GenPept accession No. FJ605512).
Figure 9. Phylogenetic analysis of plant PAL, F3H and DFR. The phylogenetic tree was constructed by the Neighbor-Joining method (based on 1000 bootstrap replicates) using MEGA4.1 software; the bootstrap values are shown on the branches. The target proteins SvPAL, SvF3H and SvDFR are indicated by ○, □ and ◊, respectively. The database accession numbers of the sequences used in the alignment are: Sweet Potato (SpPAL, GenPept accession No. AAA33389), Oryza sativa (OsPAL, GenPept accession No. AAO72666), Daucus carota (DePAL, GenPept accession No. BAA23367), Nicotiana tabacum (NiPAL, GenPept accession No. BAA22947), Ipomoea batatas (IbPAL, GenPept accession No. BAA11459), Pisum sativum (PsPAL, GenPept accession No. BAA00885), Bambusa oldhamii (BoPAL, GenPept accession No. ACN62413), Salvia miltiorrhiza (SmPAL, GenPept accession No. ABR14606), Malus hybrid (MhF3H, GenPept accession No. ACP30361), Ginkgo biloba (GbF3H, GenPept accession No. AAU93347), Glycine max (GmF3H, GenPept accession No. ACN81825), Fragaria x ananassa (FaF3H, GenPept accession No. BAE17126), Torenia hybrid (ThF3H, GenPept accession No. BAD95810), Malus x domestica (MdF3H, GenPept accession No. BAB92997), Daucus carota (DeDFR, GenPept accession No. AAD65577), Persea americana (PaF3H, GenPept accession No. AAC97525), Pyrus communis (PcDFR, GenPept accession No. AAO39819), Daucus carota (DeDFR, GenPept accession No. AAD65578), Gossypium hirsutum (GhDFR, GenPept accession No. ACV72642), Ipomoea hortifolia (IhDFR, GenPept accession No. ACS87545), Gypsophila elegans (GeDFR, GenPept accession No. AAP13055), Camellia sinensis (CsDFR, GenPept accession No. AAT94073), Crataegus monogyna (CmDFR, GenPept accession No. AAX16491), Brassica rapa (BrDFR, GenPept accession No. AAX35752) and Scutellaria viscidula (SvDFR, GenPept accession No. FJ432699), Scutellaria viscidula (SvDFR, GenPept accession No. FJ605512).
Anthocyanidin genes of *Scutellaria viscidula*

Homology-based 3-D modeling of target proteins were implemented successfully using SWISS-MODEL (http://swissmodel.expasy.org) on the basis of their own corresponding templates: SvPAL based on phenylalanine ammonia-lyase from *Petroselinum crispum*, SvF3H on structure of flavanone 3-hydroxylase from *Arabidopsis thaliana*, and SvDFR on the structure of dihydroflavonol reductase from *Vitis vinifera*. As shown in Table 2, random coil, α-helix and extended strand were composed of these protein secondary structures, and the former two were the main components. Some important functional motifs were scanned and marked in the tertiary model (Figures 10, 11 and 12).

<table>
<thead>
<tr>
<th>Index</th>
<th>PAL</th>
<th>F3H</th>
<th>DFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino acid residues (aa)</td>
<td>711</td>
<td>350</td>
<td>259</td>
</tr>
<tr>
<td>Molecular weight (Da)</td>
<td>77185.1</td>
<td>39384.9</td>
<td>28588.0</td>
</tr>
<tr>
<td>Theoretical pl</td>
<td>5.97</td>
<td>5.40</td>
<td>6.17</td>
</tr>
<tr>
<td>Molar extinction coefficient</td>
<td>44975</td>
<td>45755</td>
<td>32555</td>
</tr>
<tr>
<td>Formula</td>
<td>C3405H5447N949O1038S28</td>
<td>C1751H2732N474O524S18</td>
<td>C1279H2029N331O379S15</td>
</tr>
<tr>
<td>Instability index</td>
<td>37.65 (stable)</td>
<td>47.80 (unstable)</td>
<td>36.77 (stable)</td>
</tr>
<tr>
<td>Aliphatic index</td>
<td>91.84</td>
<td>80.51</td>
<td>87.72</td>
</tr>
<tr>
<td>GRAVY</td>
<td>-0.140</td>
<td>-0.378</td>
<td>-0.095</td>
</tr>
<tr>
<td>Secondary structure</td>
<td>α-helix: 43.88%</td>
<td>α-helix: 31.43%</td>
<td>α-helix: 28.96%</td>
</tr>
<tr>
<td></td>
<td>β-strand: 12.10%</td>
<td>β-strand: 22.29%</td>
<td>β-strand: 17.37%</td>
</tr>
<tr>
<td></td>
<td>Random coil: 44.02%</td>
<td>Random coil: 46.29%</td>
<td>Random coil: 53.67%</td>
</tr>
</tbody>
</table>

Table 2. Analysis of molecular structures and physicochemical properties.

Figure 10. 3-D structural model of SvPAL. The α-helix and extended strand are indicated in red and blue, respectively. Random coils are indicated in silver. Selected important motifs were indicated.

Figure 11. 3-D structural model of SvF3H. The α-helix and extended strand are indicated in red and blue, respectively. Random coils are indicated in silver. Selected important motifs are indicated.
In conclusion, anthocyanidin biosynthetic genes *pal*, *f3h* and *dfr* from the ornamental plant *S. viscidula* were cloned and characterized. Each target nucleotide acid sequence and its encoding protein was analyzed in detail using bioinformatic analysis. Previous studies revealed that PAL, F3H and DFR were the pivotal enzymes, regulating the metabolic flux and driving the anthocyanidin biosynthesis. In *S. viscidula*, anthocyanidin, mediated through *SvPAL, SvF3H* and *SvDFR*, was an important secondary metabolite with pharmaceutical and ornamental interest. The successful isolation of the *Svpal*, *Svf3h* and *Svdfr* gene, with preliminary identification of their structural properties, can help to map and regulate the important stages involved in anthocyanidin biosynthesis by genetic engineering so as to diversify flower color and improve the ornamental value of *S. viscidula*.

ACKNOWLEDGMENTS

The authors thank Prof. Yueming Jiang (South China Botanical Garden, Chinese Academy of Sciences, China) for serving as a pre-submission language editor. Research financially supported by the Opening Foundation of Key Laboratory of Eco-environments in Three Gorges Reservoir Region of Ministry of Education (#EF200609).

REFERENCES

Anthocyanidin genes of Scutellaria viscidula

