Lipid peroxidation and antioxidant capacity of G6PD-deficient patients with A-(202G>A) mutation

L.S. Ondei¹, L.M. Silveira¹, A.A. Leite², D.R.S. Souza¹, M.A.S. Pinhel¹, S. Percário⁴, O. Ricci Júnior⁵ and C.R. Bonini-Domingos¹

¹Departamento de Biologia, Laboratório de Hemoglobinas e Genética das Doenças Hematológicas, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, SP, Brasil
²Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP, Brasil
³Departamento de Biologia Molecular, Laboratório de Bioquímica e Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, SP, Brasil
⁴Instituto de Ciências Biológicas, Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, PA, Brasil
⁵Hemocentro, São José do Rio Preto, SP, Brasil

Corresponding author: L.S. Ondei
E-mail: luondei@yahoo.com.br

Received July 24, 2009
Accepted September 16, 2009
Published November 10, 2009

ABSTRACT. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an enzymopathy in which reduced NADPH concentrations are not maintained, resulting in oxidative damage. We evaluated G6PD activity, oxidative stress levels and Trolox equivalent antioxidant capacity in individuals with the A-(202G>A) mutation for G6PD deficiency. Five hundred and forty-four peripheral blood samples were screened for G6PD deficiency; we also analyzed lipid peroxidation products measured as thiobarbituric acid reactive species and Trolox equivalent antioxidant capacity. Men with the A-(202G>A) mutation...
had lower G6PD activity than women with the same mutation. Individuals with the A-(202G>A) mutation also differed in mean Trolox equivalent antioxidant capacity values but not for thiobarbituric acid reactive species values. We concluded that A-(202G>A) mutation is associated with reduced G6PD activity and increased Trolox equivalent antioxidant capacity.

Key words: G6PD deficiency; TBARS; TEAC; Oxidative stress