Non-additive genetic effects on weights and performance of a Brazilian *Bos taurus* x *Bos indicus* beef composite

G.B. Mourão, J.B.S. Ferraz², J.P. Eler², R.S. Bueno³, J.C.C. Balieiro², E.C. Mattos² and L.G.G. Figueiredo⁴

Departamento de Ciências Exatas, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP, Brasil

²Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil

³Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR, Brasil

⁴Departamento de Melhoramento e Nutrição Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, SP, Brasil

Corresponding author: G.B. Mourão
E-mail: gbmourao@esalq.usp.br

Received July 30, 2008
Accepted August 14, 2008
Published October 28, 2008

ABSTRACT. The aim of the present study was to evaluate the heterosis effects on weaning weight at 205 days (WW, N = 146,464), yearling weight at 390 days (YW, N = 69,315) and weight gain from weaning to yearling (WG, N = 59,307) in composite beef cattle. The fixed models were: RM, which included contemporary groups, class of age of dam, outcrossing percentages for direct and maternal effects, and additive direct and maternal (AM) breed effects; R, RM model, minus AM breed effects, and H, RM model, minus additive breed effects. The estimates for W205 were in general positive (P < 0.01). The R and H models resulted in similar estimates, but they were very different from the ones estimated by the RM model. For W390, the R and H models resulted in general positive estimates (P < 0.05). For WG, the RM model resulted in...
general significant heterosis effects (P < 0.05). It can be concluded that the RM model seems to supply estimates of better quality (P < 0.01).

Key words: Beef cattle; Crossbreeding; Heterosis; Performance