Molecular characterization of an expressed sequence tag representing the cuticle-degrading serine protease gene (*PII*) from the nematophagous fungus *Arthrobotrys oviformis* by differential display technology

A. Nagee, A. Acharya, A. Shete, P.N. Mukhopadhyaya, and B.A. Aich

1Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, New Vallabh Vidyanagar, Anand, India
2Medical Genetics Division, geneOmbio Technologies, Krishna Chambers, Pashan-Sus Road, Pashan, Pune, Maharashtra, Gujarat, India

Corresponding author: P.N. Mukhopadhyaya
E-mail: pmn6619@yahoo.co.in

Received June 27, 2008
Accepted August 11, 2008
Published November 4, 2008

ABSTRACT. The technology of mRNA-based differential display reverse transcriptase-polymerase chain reaction (DDRT-PCR) was used to detect a 246-bp differentially expressed fragment from the nematophagous fungus *Arthrobotrys oviformis* when young mycelia were induced with the round worm *Haemonchus contortus*. The fragment was converted into an expressed sequence tag (EST) through characterization at the molecular level. Homology search indicated that the differentially expressed fragment originated from the cuticle-degrading serine protease gene, which has been previously reported to play a role in nematophagous activity in *A. oligospora*, *Dactylaria parvispora*, *A. musiformis*, and other potential anti-fungal biological control agents. Several single nucleotide polymorphisms found to represent both synonymous as well as non-synonymous mutations within this short sequence stretch of 246 bp suggested genetic variability within the gene in this group of nematode-trapping fungi. The cloned EST fragment
has potential for use as a hybridization probe for searching full-length
gene from an appropriate cDNA library of this and related fungi. This
is the first report of the identification of an EST representing the cuticle-
degradating serine protease gene from *A. oviformis* using the technique
of DDRT-PCR.

Key words: Expressed sequence tag; Biological control;
Differential display reverse transcriptase; Nematophagous;
Single nucleotide polymorphism