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Abstract. Spectral counting is a strategy to quantify relative 
protein concentrations in pre-digested protein mixtures analyzed by 
liquid chromatography online with tandem mass spectrometry. In 
the present study, we used combinations of normalization and statis-
tical (feature selection) methods on spectral counting data to verify 
whether we could pinpoint which and how many proteins were dif-
ferentially expressed when comparing complex protein mixtures. 
These combinations were evaluated on real, but controlled, experi-
ments (yeast lysates were spiked with protein markers at different 
concentrations to simulate differences), which were therefore verifi-
able. The following normalization methods were applied: total sig-
nal, Z-normalization, hybrid normalization, and log preprocessing. 
The feature selection methods were: the Golub index, the Student 
t-test, a strategy based on the weighting used in a forward-support 
vector machine (SVM-F) model, and SVM recursive feature elimi-
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nation. The results showed that Z-normalization combined with 
SVM-F correctly identified which and how many protein markers 
were added to the yeast lysates for all different concentrations. The 
software we used is available at http://pcarvalho.com/patternlab.

Key words: MudPIT; Feature selection; Support vector machine; 
Spectral counting; Feature ranking

Introduction

A goal of proteomics is to distinguish between various states of a system to identify 
protein expression differences (Jessani et al., 2005). The first strategies used two-dimensional 
gel electrophoresis for comparing the migration of proteins according to their molecular weight 
and isoelectric point. In 2002, alternative approaches emerged to compare biological samples 
from different states. Mass spectrometry (MS) analysis was performed on enriched proteins 
that were fractionated on the surface of an MS plate. By correlating the peptide mass to charge 
(m/z) values obtained from SELDI-TOF MS (surface enhanced laser desorption ionization 
time-of-flight MS) with peptide abundance, Petricoin et al. (2002) used machine learning over 
a SELDI-TOF dataset acquired from SELDI-TOF MS of serum from control subjects and ovar-
ian cancer patients. As a second step, unknown spectra were classified as belonging to the 
patient or control subject class (Petricoin et al., 2002; Unlu et al., 1997). A variety of feature 
selection/classification methods have since then been described as being used for this purpose, 
including genetic algorithms (Shah and Kusiak, 2004), Fisher criterion scores (Kolakowska and 
Malina, 2005), beam search (Badr and Oommen, 2006; Carlson et al., 2006), branch-and-bound 
(Polisetty et al., 2006), Pearson correlation coefficients (Mattie et al., 2006), and support vector 
machines recursive feature elimination (SVM-RFE; Carvalho et al., 2007).

The need for high sensitivity when analyzing samples of greater complexity led to 
the use of liquid chromatography (LC) coupled with electrospray MS (LC-MS) to profile 
digested protein mixtures. Elimination of the data-dependent tandem MS process enhances 
the detection of ions, since the instrument spends less time acquiring tandem mass spectra 
and the lack of alternating MS and MS/MS scans improves the ability to compare analyses. 
Later, ion chromatograms from an LC-MS system were used to identify differences between 
samples including complex mixtures such as digested serum with reasonable variation in the 
analyses (Wang et al., 2003). Wiener et al. (2004) used replicate LC-MS analyses to develop 
statistically significant differential displays of peptides. These approaches divide the compar-
ison and identification processes into first identifying chromatographic and ion differences 
and then identifying the peptides responsible for the differences. To reduce comparison er-
rors and ambiguities between samples, chromatographic peak alignment is increasingly used 
(Bylund et al., 2002; Maynard et al., 2004; Wiener et al., 2004; Wong et al., 2005; Katajamaa 
and Oresic, 2005; Zhang et al., 2005; Katajamaa et al., 2006). 

By using the numbers of tandem mass spectra obtained for each protein or “spectral 
counting” as a surrogate for protein abundance in a mixture, Liu et al. (2004) demonstrated 
that “spectral counts” correlated linearly with protein abundance in a mixture within over 
two orders of magnitude. Because of the more complex nature of the LC/LC method and the 
alternating acquisition of mass spectra and tandem mass spectra, chromatographic alignment 
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is far more complicated than using LC-MS, and therefore, data are most often analyzed from 
the perspective of tandem mass spectra and identified proteins. Two issues with the use of LC/
LC/MS/MS analyses to compare samples are the normalization of spectral counting data and 
the identification of differences between samples.

In the present study, we analyzed how well selected univariate and multivariate statisti-
cal/pattern recognition approaches can pinpoint protein markers, added at different concentra-
tions to complex protein mixtures (yeast lysates), using spectral counting data. Different com-
binations of normalization/feature selection methods were applied and the combination that 
performed best on our dataset was identified by means of two approaches. The first ranked each 
protein by a statistical score according to which spiked markers were expected to rank highest. 
The second method relied on the SVM leave-one-out (LOO) cross-validation and the Vapnik-
Chervonenkis (VC) confidence; briefly, these are quantifiers that allow the estimation of how 
well a classifier is to categorize unseen samples (Vapnik, 1995).

Experimental

MudPIT spectral count acquisition from yeast lysate with spiked proteins

Four aliquots of 400 μg of a soluble yeast total cell lysate were mixed with Bio-Rad 
SDS-PAGE low-range weight standards containing phosphorylase b, serum albumin, ovalbumin, 
lysozyme, carbonic anhydrase, and trypsin inhibitor at relative levels of 25, 2.5, 1.25, and 0.25% 
of the final mixtures’ total weight, respectively. Each sample was sequentially digested, under the 
same conditions, with endoproteinase Lys-C and trypsin (Washburn et al., 2001). Approximately 
70 μg of the digested peptide mixture was loaded onto a biphasic (strong cation exchange/reversed 
phase) capillary column and washed with a buffer containing 5% acetonitrile, 0.1% formic acid 
diluted in DDI water. The two-dimensional LC (LC/LC) separation and tandem MS (MS/MS) 
conditions were as described by Washburn et al. (2001). The flow rate at the tip of the biphasic 
column was 300 nL/min when the mobile phase composition was 95% H2O, 5% acetonitrile, and 
0.1% formic acid. The ion trap MS, Finnigan LCQ Deca (Thermo Electron, Woburn, MA, USA), 
was set to the data-dependent acquisition mode with dynamic exclusion turned on. One MS survey 
scan was followed by four MS/MS scans. Each aliquot of the digested yeast cell lysate was ana-
lyzed three times. The data sets were searched using a modified version of the Pep_Prob algorithm 
(Sadygov and Yates III, 2003) against a database combining yeast and human protein sequences, 
and the results were post-processed by DTASelect (Tabb et al., 2002). The sequences of the added 
markers and some common protein contaminants (e.g., keratin) were added to the database.

Generation of the three testing conditions

All computations in this study were performed using PatternLab for proteomics, available 
at http://pcarvalho.com/patternlab for academic use; its source code is also available upon request.

Firstly, PatternLab generated an index file listing all the proteins (features) identified 
in all the MudPIT assays. This index assigns a unique protein index number (PIN) to each 
feature. Secondly, all experimental data from the DTASelect files were combined into a single 
sparse matrix; this format is more suitable for feature selection. Each row of this matrix is 
relative to one MudPIT assay and gives the spectral count identified for each PIN in that assay. 
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Thus, for example, the row “1:3 2:5 3:6” specifies an assay having spectral count values of 3, 
5, and 6 for PINs 1, 2, and 3, respectively; all other PINs are understood to have a value of 0. 
The sparse matrix generated for this study had 15 rows, obtained from 15 MudPIT runs with 
different percentages of protein markers added to the yeast lysate (4 runs with added markers 
representing 25% of the total protein content, 4 with 2.5%, 3 with 1.25%, and 4 with 0.25%). 
We note that each row had approximately 1200 PINs and a total of 2181 PINs were detected 
among all 15 rows, showing that many proteins were not identified in all runs.

Three testing datasets were then generated using the matrix, each one being identical to all 
others except for a class label introduced before each row. In the first test set (TSet1), the rows orig-
inating from the 25% protein spiking were labeled as +1 (positive) and all the others -1 (negative). 
In the second test set (TSet2), the 25% and the 2.5% matrix rows were labeled as +1 and the rest 
as -1. In the third (TSet3), the rows resulting from the 0.25% spiking were labeled as -1, the others 
as +1. The aim of such class labeling was to create 3 testing conditions for us to later compare the 
positively and negatively labeled rows in each testing dataset and verify whether the added proteins 
having different concentrations could be pinpointed. Figure 1 summarizes our methodology.

Figure 1. Protein markers were added at different concentrations to 15 yeast total cell lysate samples (A). Each 
lysate was analyzed by MudPIT (B) and protein identification carried out by Pep_Prob (C) and post-processed by 
DTASelect. Three different test sets were then generated. Combinations of normalization/feature selection methods 
were used to search for the added protein markers with different concentrations in each test set (D). RP = reverse 
phase material; SCX = strong cation exchange material; MS = mass spectrometry.
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Calculation

Normalization methods evaluated in this study

For this study, we evaluated the following normalization strategies: total signal (TS), 
Z-normalization (Z), a hybrid normalization obtained by TS followed by Z (TS→Z), and log 
preprocessing.

Normalization by total spectral counting (total signal or TS)

Let SCji be the spectral count associated with PIN i in row j. The total spectral count 
(TSC) of row j is

(Equation 1)

The normalization by TS of row j is obtained by performing

(Equation 2)

for all i.

Z-normalization

The Z-normalization has been widely adopted in microarray studies (Cheadle et al., 
2003). For PIN i, let µi be the mean SCji over all j, and similarly σi the standard deviation. 
Normalization is achieved by performing

(Equation 3)

for all j. The mean of the resulting SCji over all j is then zero and the standard deviation 
is 1. We note that Z is carried out over each matrix column while TS is performed on 
each matrix row. 

Hybrid normalization (TS→Z)

This is obtained by TS followed by Z.

Log preprocessing

Taking the logarithm of the spectral count, data were also evaluated as a preprocessing 
step before the above normalization steps:
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(Equation 4)

Our aim was to increase the signal of the PINs with low spectral counts with respect 
to the “highly abundant” PINs.

Feature selection/ranking methods evaluated in this study

For this study, we evaluated the Golub correlation coefficient, the Student t-test, 
a method we call forward-SVM (SVM-F), and SVM-RFE. All computations were carried 
out using PatternLab.

Golub index

For PIN i, the Golub index (GI; Golub et al., 1999) is defined by

(Equation 5)

where  are the means and standard deviations of the data in column 
i restricted to the positive (+) or negative (-) class. The larger a positive GIi the stronger 
the PIN’s correlation will be with the positive class, whereas the smaller a negative GIi the 
stronger the correlation with the negative class. For our goal of feature ranking, we simply 
took absolute values.

Student t-test

The score used for the Student t-test is given by

(Equation 6)

where each ni is of the number of samples restricted to column i and to the positive (+) or 
negative (-) class, and each si is the corresponding variance. For our goal of feature ranking, 
we simply took absolute values.

Support vector machine

SVMs constitute a supervised learning method based on statistical learning theory 
and the principle of structural risk minimization (Vapnik, 1995). SVMs have been suc-
cessfully used in a number of bioinformatics applications, including the prediction of 
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protein folds (Saha and Raghava, 2006), siRNA functionality (Teramoto et al., 2005), 
rRNA, DNA, and DNA-binding proteins (Yu et al., 2006), and the prediction of person-
alized genetic marker panels (Carvalho et al., 2006). An SVM model is evaluated using 
the most informative patterns in the data (the so-called support vectors) and is capable of 
separating two classes by finding an optimal hyperplane of maximum margin between the 
corresponding data.

Briefly, in the linearly separable case the SVM approach consists of finding a vec-
tor w in the feature space and a scalar b such that the hyperplane 〈w, x〉 + b can be used to 
decide the class, + or -, of input vector x (respectively if 〈w, x〉 + b ≥ 0 or 〈w, x〉 + b < 0). 
During the training phase, the model’s compromise between the empirical risk and its own 
complexity (related to its generalization capacity) is controlled by a penalty parameter C, 
a positive constant. We refer the reader to Vapnik’s book for further details of the SVM 
approach, including how to obtain w and b from the training dataset (Vapnik, 1995). To 
carry out SVM modeling, PatternLab makes use of SVMlight (Joachims, 1998).

SVM-F

SVM-F feature ranking is performed on the SVM model of the whole training set. 
If w is the corresponding vector in the feature space and wi is the coordinate of w that cor-
responds to PIN i, then SVM-F ranks features in non-increasing order of w 2

i . Clearly, the 
lowest ranking PINs influence the hyperplane the least. SVM-F’s output consists of the 
PINs ordered and listed side by side with their ranking scores. 

SVM-RFE

SVM-RFE consists of recursively applying SVM-F to a succession of SVM models. 
The first of these corresponds to the whole training set; for k > 1, the kth SVM model cor-
responds to the previously used training set after the removal of all entries that refer to the 
least-ranking PIN (according to SVM-F). The SVM models are then built on successively 
lower-dimensional spaces. Termination occurs when a desired dimensionality is reached or 
some other criterion is met. Since features are removed one at a time, an importance ranking 
can also be established.

Evaluation of combined normalization and feature-ranking methods

Combinations of the methods described were used to verify whether the added 
proteins could be pinpointed when comparing mixtures spiked with markers at different 
concentrations. In the ideal case, the four added proteins should achieve the top feature 
ranks. The ranks of the added proteins are listed in Tables 1 and 2 for the various method 
combinations and concentration comparisons. We used C = 100 for SVM training, fol-
lowing Guyon et al. (2002). The tables also show, in each case, a penalty score (Pscore) 
used to evaluate each method. This score plus one is the logarithm to the base 10 of the 
summed ranks of the four markers. Clearly, the ideal ranks yield a (minimum) Pscore of 
0. Figure 2 plots the performance of each combination of normalization and feature rank-
ing strategy.



349

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 7 (2): 342-356 (2008)

Differential proteomics by spectral counting

									












N

o 
Lo

g 
pr

ep
ro

ce
ss

in
g

		


TS
	

Z	
TS

→
Z	

U
D

		


G
I	

SV
M

-F
	

t-t
es

t	
SV

M
-R

FE
	

G
I	

SV
M

-F
	

t-t
es

t	
SV

M
-R

FE
	

G
I	

SV
M

-F
	

t-t
es

t	
SV

M
-R

FE
	

G
I	

SV
M

-F
	

t-t
es

t	
SV

M
-R

FE

									












TS

et
1									













PH
S2

		
3	

3	
2	

34
2	

2	
4	

3	
6	

3	
1	

5	
4	

2	
3	

1	
12

42
A

LB
		

1	
1	

18
	

34
0	

1	
2	

1	
7	

1	
2	

13
2	

1	
1	

1	
2	

46
9

C
A

H
		

4	
4	

18
7	

34
3	

17
	

3	
25

	
2	

4	
4	

30
1	

5	
18

	
4	

9	
12

61
IT

R
A

		
2	

2	
30

	
34

1	
3	

1	
2	

1	
2	

3	
12

8	
2	

3	
2	

7	
47

6
Ps

co
re

	
0	

0	
1.

37
	

2.
14

	
0.

36
	

0	
0.

49
	

0.
20

	
0	

0	
1.

75
	

0.
08

	
0.

38
	

0.
04

	
0.

28
	

2.
54

									












TS

et
2

PH
S2

		
2	

5	
1	

7	
4	

4	
10

	
14

	
2	

6	
1	

56
	

4	
4	

7	
20

A
LB

		
1	

1	
2	

1	
1	

2	
1	

1	
1	

3	
2	

18
	

1	
1	

2	
14

C
A

H
		

4	
3	

4	
4	

2	
1	

2	
4	

4	
1	

5	
23

	
2	

3	
1	

16
IT

R
A

		
3	

2	
3	

2	
3	

3	
3	

12
	

3	
2	

4	
22

	
3	

2	
3	

15
Ps

co
re

	
0	

0.
04

	
0	

0.
15

	
0	

0	
0.

2	
0.

49
	

0	
0.

08
	

0.
08

	
1.

08
	

0	
0	

0.
11

	
0.

81

									












TS

et
3

PH
S2

		
35

2	
4	

5	
17

3	
10

	
4	

11
1	

18
	

35
2	

7	
7	

15
	

9	
4	

68
	

31
5

A
LB

		
34

8	
1	

2	
8	

2	
1	

2	
2	

34
8	

5	
3	

54
	

2	
1	

8	
31

3
C

A
H

		
35

7	
3	

1	
6	

1	
2	

1	
1	

35
7	

3	
5	

61
	

1	
3	

2	
31

2
IT

R
A

		
36

1	
2	

4	
12

	
3	

3	
5	

17
	

36
1	

6	
4	

43
	

3	
2	

10
	

31
4

Ps
co

re
	

2.
15

	
0	

0.
08

	
1.

30
	

0.
20

	
0	

1.
1	

0.
58

	
2.

15
	

0.
32

	
0.

28
	

1.
24

	
0.

18
	

0	
0.

94
	

2.
10

PS
um

		
2.

15
	

0.
04

	
0.

93
	

3.
59

	
0.

56
	

0	
0.

74
	

1.
27

	
2.

15
	

2.
4	

1.
30

	
2.

4	
0.

56
	

0.
04

	
0.

60
	

5.
45

Ta
bl

e 
1.

 N
or

m
al

iz
at

io
n 

an
d 

fe
at

ur
e 

se
le

ct
io

n 
re

su
lts

 (C
 =

 1
00

).

Th
e 

fir
st 

co
lu

m
n 

lis
ts 

th
e 

ad
de

d 
pr

ot
ei

ns
 w

e 
tra

ck
ed

: p
ho

sp
ho

ry
la

se
 b

 (P
H

S2
), 

se
ru

m
 a

lb
um

in
 (A

LB
), 

ca
rb

on
ic

 a
nh

yd
ra

se
 (C

A
H

), 
an

d 
try

ps
in

 in
hi

bi
to

r (
IT

RA
). 

W
e 

gi
ve

 re
su

lts
 o

n 
th

re
e 

no
rm

al
iz

at
io

n 
m

et
ho

ds
, i

n 
ad

di
tio

n 
to

 re
su

lts
 o

n 
th

e 
“u

nn
or

m
al

iz
ed

” 
da

ta
 (U

D
): 

to
ta

l s
ig

na
l (

TS
), 

Z-
no

rm
al

iz
at

io
n 

(Z
) a

nd
 T

S 
fo

llo
w

ed
 b

y 
Z.

 G
I, 

t-t
es

t, 
SV

M
-F

 an
d 

SV
M

-R
FE

 st
an

d 
fo

r G
ol

ub
’s 

in
de

x,
 S

tu
de

nt
 t-

te
st 

, f
or

w
ar

d 
su

pp
or

t v
ec

to
r m

ac
hi

ne
, a

nd
 S

V
M

-re
cu

rs
iv

e f
ea

tu
re

 el
im

in
at

io
n,

 th
e f

ou
r f

ea
tu

re
 se

le
ct

io
n 

m
et

ho
ds

. D
at

a 
ar

e 
pr

es
en

te
d 

fo
r a

ll 
di

ffe
re

nt
 te

st 
se

t a
na

ly
se

s (
re

fe
r t

o 
th

e 
en

d 
of

 th
e 

se
ct

io
n 

“G
en

er
at

io
n 

of
 th

e 
th

re
e 

te
sti

ng
 c

on
di

tio
ns

”)
. E

ac
h 

nu
m

be
r i

nd
ic

at
es

 th
e 

ra
nk

 o
f t

he
 p

ro
te

in
 m

ar
ke

rs
 a

m
on

g 
th

e 
va

rio
us

 o
th

er
 p

ro
te

in
s p

re
se

nt
 in

 th
e 

ye
as

t l
ys

at
e. 

To
 c

om
pa

re
 th

e 
m

et
ho

d 
co

m
bi

na
tio

ns
, w

e 
us

ed
 a

 p
en

al
ty

 sc
or

e 
(P

sc
or

e)
 th

at
 is

 
ca

lc
ul

at
ed

 as
 lo

g 
(s

um
 o

f t
he

 ad
de

d 
pr

ot
ei

n 
ra

nk
s)

 -1
. H

er
e w

e u
se

d 
10

 as
 th

e l
og

’s 
ba

se
; t

hu
s, 

fo
r a

 p
er

fe
ct

 sc
or

e t
he

 ra
nk

s a
dd

 u
p 

to
 1

0 
(4

 +
 3

 +
 2

 +
 1

) y
ie

ld
in

g 
th

e P
sc

or
e 

as
 0

. P
Su

m
 is

 th
e s

um
 o

f t
he

 P
sc

or
es

 fo
r a

 g
iv

en
 m

et
ho

d 
an

d 
is 

us
ed

 to
 q

ui
ck

ly
 se

ar
ch

 fo
r w

hi
ch

 p
er

fo
rm

ed
 b

es
t. 

TS
et

 1
, T

Se
t 2

 an
d 

TS
et

 3
 ar

e fi
rs

t, 
se

co
nd

 an
d 

th
ird

 te
st 

se
ts,

 re
sp

ec
tiv

el
y.



350

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 7 (2): 342-356 (2008)

P.C. Carvalho et al.

									











L
og

 p
re

pr
oc

es
si

ng

				





TS
				





Z				





TS

C
→

Z				





U
D

		


G
I	

SV
M

-F
	

t-t
es

t	
SV

M
-R

FE
	

G
I	

SV
M

-F
	

t-t
es

t	
SV

M
-R

FE
	

G
I	

SV
M

-F
	

t-t
es

t	
SV

M
-R

FE
	

G
I	

SV
M

-F
	

t-t
es

t	
SV

M
-R

FE

									












TS

et
1

PH
S2

		
59

	
35

9	
44

	
52

2	
31

	
1	

5	
7	

59
	

22
8	

30
5	

19
4	

31
	

1	
2	

6
A

LB
		

7	
75

	
15

9	
37

3	
58

	
2	

13
2	

6	
7	

2	
38

9	
11

	
58

	
3	

17
	

8
C

A
H

		
6	

75
	

11
1	

37
2	

25
2	

4	
30

1	
22

	
6	

1	
42

6	
5	

25
2	

2	
18

6	
11

IT
R

A
		

8	
10

1	
12

2	
37

5	
87

	
3	

12
8	

14
	

8	
3	

39
8	

8	
87

	
4	

29
	

10
Ps

co
re

	
0.

90
	

1.
79

	
1.

64
	

2.
22

	
1.

63
	

0	
1.

75
	

0.
69

	
0.

90
	

1.
37

	
2.

18
	

1.
34

	
1.

63
	

0	
1.

40
	

0.
54

									












TS

et
2

PH
S2

		
10

17
	

35
1	

7	
43

2	
2	

1	
1	

1	
10

17
	

23
4	

1	
31

2	
2	

1	
1	

1
A

LB
		

9	
80

	
29

	
25

	
1	

4	
2	

2	
9	

2	
5	

7	
1	

3	
2	

3
C

A
H

		
6	

75
	

16
	

38
	

5	
3	

5	
15

	
6	

1	
29

5	
1	

5	
2	

4	
8

IT
R

A
		

30
	

88
	

22
	

32
	

3	
2	

3	
7	

30
	

3	
3	

6	
3	

4	
3	

7
Ps

co
re

	
2.

03
	

1.
77

	
0.

87
	

1.
72

	
0.

04
	

0	
0.

04
	

0.
40

	
2.

03
	

1.
38

	
1.

48
	

1.
51

	
0.

04
	

0	
0	

0.
28

									












TS

et
3

PH
S2

		
20

88
	

40
7	

1	
51

2	
4	

2	
6	

3	
20

88
	

24
7	

2	
35

4	
4	

1	
5	

9
A

LB
		

89
2	

91
	

12
	

83
	

2	
3	

3	
7	

89
2	

2	
4	

10
	

2	
3	

2	
8

C
A

H
		

66
4	

82
	

2	
56

	
1	

4	
5	

1	
66

4	
1	

1	
2	

1	
2	

1	
1

IT
R

A
		

13
52

	
10

0	
8	

11
3	

3	
1	

4	
2	

13
52

	
3	

3	
11

	
3	

4	
4	

7
Ps

co
re

	
2.

70
	

1.
83

	
0.

36
	

1.
88

	
0	

0	
0.

26
	

0.
11

	
2.

72
	

1.
38

	
0	

1.
58

	
0	

0	
0.

08
	

0.
40

PS
um

		
5.

63
	

5.
39

	
1.

25
	

5.
82

	
1.

67
	

0	
1.

30
	

1.
2	

5.
65

	
4.

13
	

1.
79

	
4.

43
	

1.
67

	
0	

0.
93

	
1.

22

Ta
bl

e 
2.

 N
or

m
al

iz
at

io
n 

an
d 

fe
at

ur
e 

se
le

ct
io

n 
re

su
lts

 (C
 =

 1
00

) a
fte

r l
og

 p
re

pr
oc

es
si

ng
.

Fo
r a

bb
re

vi
at

io
ns

, s
ee

 le
ge

nd
 to

 T
ab

le
 1

. L
og

e w
as

 u
se

d 
as

 a
 p

re
pr

oc
es

si
ng

 st
ep

 b
ef

or
e 

qu
al

ify
in

g 
th

e 
fe

at
ur

e 
ra

nk
in

g 
m

et
ho

ds
.



351

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 7 (2): 342-356 (2008)

Differential proteomics by spectral counting

Evaluation of the normalization methods

By using only the spectral counts of the added proteins, SVM models were also 
calculated varying the C parameter from 2 to 100 with a step of 2 for all normalization 
methods. The Cs that achieved a minimum LOO error or VC confidence were recorded. 
In either case, the LOO error, the VC confidence, and the number of support vectors of 
the model were also recorded (Table 3). We note that LOO error and VC confidence are 
respectively ways of measuring a model’s empirical risk (the error within the dataset) and 
how much may be added to that risk as the model is applied to a new dataset (generaliza-
tion capacity).

The LOO technique consists of removing one example from the training set, 
computing the decision function with the remaining training data and then testing it on 
the removed example. In this fashion one tests all examples of the training data and mea-
sures the fraction of errors over the total number of training examples.

The model’s VC confidence has roots in statistical learning theory (Vapnik, 1995) and 
is given by

(Equation 7)

were h is the VC dimension of the model’s feature space, l is the number of training sam-
ples and 1-η is the probability that the VC confidence is indeed the maximum additional 

Figure 2. Sum of penalty scores (Pscores) calculated for each combination of normalization/feature 
selection method when comparing the different spike concentrations (legend), with (B) and without (A) log 
preprocessing. Lower bars indicate better performance. The bar heights were limited to 4. We recall that the 
Pscore is calculated by obtaining the Log10 of the sum of the ranks and subtracting 1. Note that SVM-F with 
and without log preprocessing obtains at least one perfect score. UD stands for “unnormalized” data. For 
abbreviations, see legend to Table 1.
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error to the empirical risk as new datasets are presented to the model. We used η = 0.05 
throughout. We recall that, given an SVM model, the VC dimension is a function of the 
separating margin between classes and the smallest radius of the hypersphere that encom-
passes all input vectors.

Table 3. Linear support vector machine (SVM) separability analysis.

		  No log preprocessing	 Log preprocessing

Norm.	 TS	 Z	 TS→Z	 UD	 TS	 Z	 TS→Z	 UD

					     TSet1

C for Min VC	 2	 2	 2	 2	 2	 2	 2	 2
C for min LOO	 86	 2	 2	 2	 2	 2	 2	 2
VC-LOO	 0.27	 0	 0	 0	 0	 0	 0	 0
mLOO	 0	 0	 0	 0	 0	 0	 0	 0
VC-Conf-mVC	 0.624	 1.333	 1.027	 1.871	 2.301	 1.949	 1.501	 2.503
VC-LOO-SV	 8	 3	 2	 2	 3	 4	 2	 3
mLOO-SV	 8	 3	 2	 2	 3	 4	 2	 3

					     TSet2

C for Min VC	 2	 2	 2	 2	 2	 2	 2	 2
C for min LOO	 2	 2	 2	 2	 54	 2	 2	 2
VC-LOO	 0.47	     0	 0.27	 0	 0.467	 0	 0.20	 0
mLOO	 0.47	     0	 0.27	 0	 0.333	 0	 0.20	 0
VC-Conf-mVC	 0.624	      1.278	 0.775	 2.013	 >2.753	 1.239	 1.641	 2.431
VC-LOO-SV	 8	     4	 8	 3	 8	 4	 9	 2
mLOO-SV	 8	     4	 8	 3	 8	 4	 9	 2

					     TSet3

C for Min VC	 4	     2	 4	 2	 6	 2	 2	 2
C for min LOO	 4	     2	 4	 2	 6	 2	 4	 2
VC-LOO	 0.27	     0	 0.27	 0	 0.200	 0	 0.267	 0
mLOO	 0.27	     0	 0.27	 0	 0.200	 0	 0.200	 0
VC-Conf-mVC	 0.624	     1.841	 0.633	 1.265	 1.470	 1.280	 1.625	 1.673
VC-LOO-SV	 9	     4	 10	 2	 8	 2	 8	 2
mLOO-SV	 9	     4	 10	 2	 8	 2	 8	 2

C for Min VC and C for min LOO represent the C values used during the SVM training that achieved the minimum 
Vapnik-Chervonenkis (VC) confidence and the minimum leave-one-out (LOO) error, respectively. VC-LOO and the 
mLOO are the LOO errors obtained when C for Min VC and C for min LOO are used during the SVM training 
phase. VC-Conf-mVC represents the model’s VC confidence when the model was trained with C for min LOO. 
VC-LOO-SV and the mLOO-SV represent the number of support vectors contained in the classification model when 
trained with C for Min VC and C for min LOO, respectively. For other abbreviations, see legend to Table 1.

Predicting how many proteins were added

Feature ranking can be combined with methods that predict how many features are 
significant. Here, predicting the number of features is equivalent to estimating how many 
proteins were added. All feature ranking methods we used output a two-column list having 
features (PINs) ordered by their ranks in the first column and the method’s score for each PIN 
in the second column. The number of added proteins was estimated by locating, in this out-
put list, the two consecutive rows that presented the greatest difference in score values. The 
number of features was then computed by counting how many features have scores above or 
equal to this gap’s upper limit.
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Results and discussion

Evaluation of the feature selection/ranking methods

An efficient feature ranking criterion should select the features that best contribute 
to a learning machine’s ability to “separate” data, reduce pattern recognition costs, and make 
the model less prone to overfitting. Translational studies usually possess a limited number of 
samples and have high dimensionality (many features), making feature selection and evalua-
tion of the generalization capacity imperative steps. By spiking yeast lysates with proteins and 
then detecting them, we perform a proof of principle of the potential of using spectral counts 
and SVMs to identify differences and perform classification in proteomic profiles.

In our hands, for the yeast MudPIT spectral count dataset, both Z-normalization, with 
and without log preprocessing, and the use of “unnormalized” data with log preprocessing fol-
lowed by SVM-F achieved a perfect score, pinpointing all added proteins for all configurations 
over the 102 dynamic range tested. These results are shown in Tables 1 and 2, and Figure 2.

Overall, the greatest difficulties were in locating the added markers in TSet1. We 
hypothesize that this originates from limitations in both the feature selection methods and the 
experimental procedure used. From the machine learning perspective, according to Cover and 
Van Campenhout (1977), no non-exhaustive sequential feature selection procedure is guaran-
teed to find the optimal feature subset or list the ordering of the error probabilities. We do not 
use exhaustive feature searching, since the number of subset possibilities grows exponentially 
with the number of features; this method quickly becomes unfeasible, even for a moderate 
number of features. Less abundant proteins are not identified for every MudPIT analysis, 
generating a bias toward the acquisition of the more abundant peptide ions. Thus, less abun-
dant proteins are identified by fewer peptides, and their identifications can sometimes be sup-
pressed by peptides from more abundant proteins. Liu et al. (2004) addressed the randomness 
of protein identification by MudPIT for complex mixtures. The rows originating from TSet1 
show that fewer PINs were identified during these runs (~800), contrasting with the ~1200 
PINs from the other runs. This lack of PINs may have driven the SVM-RFE toward an “unde-
sired direction” while recursively eliminating the features. During the RFE computation and 
before narrowing down to ~600 features, the weights of the normal vector (w) still included 
the added proteins among the most important features.

Although we successfully identified the added proteins, we believe our methods could 
develop into variants that could perform better for datasets of a different nature. The methods 
we employed are deterministic, in the sense that they quickly narrow down to what may be 
only locally optimal solutions. The quest for the global optimum in high-dimensional feature 
spaces still remains a challenge for pattern recognition. Distributed computing, coupled with 
algorithms that can efficiently rake the feature space (genetic algorithms (Shah and Kusiak, 
2004; Link et al., 1999), swarms (Guo et al., 2004), etc.), holds promises for proteomics of 
mining datasets more complex than the ones we addressed.

Evaluation of the normalization methods regarding dataset “separability”

Given that more than one method is able to select the added proteins, which one is 
best? Since added markers exist in different concentrations in each class and since spectral 
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counts correlate with protein abundance, there should be a linear function capable of separat-
ing the input vectors containing only the spectral count information of the added proteins. To 
further evaluate the generalization capacity of the model, we used the VC confidence.

Both Z and log preprocessed data allowed SVM-F to correctly select the added pro-
teins and yielded a 0% LOO error for all spiking configurations (Table 3). VC confidence 
shows that TSet1 and TSet2 normalized by Z led to a greater capacity than TSet3, thus here 
the lower concentrations made it harder for Z preprocessing. On the other hand, the log pre-
processed data separated better for the lower concentrations, probably because of the nature of 
the log function which discriminates lower values better than larger values.

In our results, the feature selection methods applied to “unnormalized” data achieved 
good Pscores. We hypothesize that this happened because the datasets were similar in the 
sense that the background proteins were technical replicates (thus easily reproducible). Had 
the yeast proteins been more variable, then it is possible that the normalization methods would 
become critically important. Further research is needed on this. 

Predicting the number of added proteins

Overall, according to our benchmarking strategy, Z-normalization followed by SVM-
F was the method that obtained a perfect score for the yeast MudPIT dataset. The method pre-
viously described to predict the number of added markers was applied to the Z/SVM-F results, 
and it correctly identified the number of added markers as being 4 for all three possibilities of 
spiked-lysate separation (TSet1 through 3).

Conclusions

In this study, we set out to address the question of whether the data from spectral 
counts can be normalized and then classified using pattern recognition techniques. The above 
results indicate that Z followed by SVM-F applied to the yeast MudPIT spectral count dataset 
is an effective method for finding differences in this type of data. The methodology described 
was also capable of correctly identifying how many markers were added to the lysate. It is 
expected that the presented method should perform satisfactorily for other experiments where 
data are similarly acquired.

The identification of trustworthy marker proteins is not an easy task, since mass spec-
trometry-based proteomics is still in development and spectral counting effectiveness can vary 
with the experimental setup, including mass spectrometry type and data-dependent analysis 
configuration. Here, combinations of normalization and feature selection strategies were vali-
dated on a controlled (spiked) but realistic (yeast lysate) experiment, which is therefore verifi-
able. Our results indicate that even in “simple” scenarios where the spike concentrations can 
be considered relatively high, the data can still play tricks on well-founded feature selection 
methods. This is due to the dataset’s high dimensionality, sparseness, and lack of a known a 
priori probability distribution. For even more complex scenarios, the searched markers could 
be present in extremely low concentrations when compared to the absolute concentrations. 
One of the existing strategies to reduce complexity is to isolate sub-proteomes; however, these 
separations are many times not straightforward to be carried out while disturbing protein con-
tent only minimally and remain a challenge.
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We have also demonstrated the importance of evaluating computational strategies 
for proteomics studies to verify which one best suits the experiment at hand before drawing 
conclusions when dealing with complex datasets. As shown by our results, the application of 
SVM-RFE in our spectral count yeast dataset could lead to false conclusions. This shows that 
pattern recognition methods can perform differently with datasets of distinct natures, strength-
ening the idea that there is no “one suits all” method.
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