On the absence of mutations in nucleotide excision repair genes in sporadic solid tumors

J.C.M. Mombach1,2, M.A.A. Castro3,4, J.C.F. Moreira4 and R.M.C. de Almeida5

1Centro de Ciências Rurais, UNIPAMPA, São Gabriel
2Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
3Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
4Universidade Luterana do Brasil, Gravatai, RS, Brasil
5Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil

Corresponding author: R.M.C. de Almeida
E-mail: rita@if.ufrgs.br

Received November 12, 2007
Accepted January 15, 2008
Published February 19, 2008

ABSTRACT. In general, stochastic tumors show genomic instability associated with the proliferation of DNA point mutations, that is, a mutator phenotype. This feature cannot be explained by a dys-functional mismatch repair alone, and indicates that nucleotide excision repair (NER) and/or base excision repair should be suppressed. However, mutations in NER genes are not causally implicated in the oncogenesis of sporadic solid tumors, according to the Cancer Gene Census at http://www.sanger.ac.uk/genetics/CGP/Census/. This brings up an apparent paradox: how to explain the recurrent non-existence in NER genes of somatic mutations causally related to cancer? In a recent study, we have shown that the origin of point mutations in cancer cell genomes can be explained by a structurally conserved NER with a functional disorder generated from its
entanglement with a disabled apoptosis gene network. In the present study, we further characterize NER gene network properties and show that it has a highly connected architecture. This feature suggests that the absence of mutations in NER genes in sporadic solid tumors is a result of their participation in many essential cellular functions.

Key words: Nucleotide excision repair; Cancer; Gene network; Sporadic solid tumors