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ABSTRACT. Several advanced techniques have been proposed for
data clustering and many of them have been applied to gene expression
data, with partial success. The high dimensionality and the multitude of
admissible perspectives for data analysis of gene expression require
additional computational resources, such as hierarchical structures and
dynamic allocation of resources. We present an immune-inspired hierar-
chical clustering device, called hierarchical artificial immune network
(HaiNet), especially devoted to the analysis of gene expression data.
This technique was applied to a newly generated data set, involving maize
plants exposed to different aluminum concentrations. The performance
of the algorithm was compared with that of a self-organizing map, which
is commonly adopted to deal with gene expression data sets. More con-
sistent and informative results were obtained with HaiNet.
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INTRODUCTION

The capability to monitor the expression levels of genes on a genomic scale has led to a
rapid evolution of molecular biology and functional genomics. By showing DNA transcriptional
behavior under particular conditions, expression data give clues about the role of genes in bio-
logical processes of interest.

However, the huge amount of data produced by gene expression experiments must be
preprocessed in order to reveal potentially useful information. In this preprocessing step, known
as cluster analysis, the apparently arbitrary distribution of expression patterns may reveal groups
of genes with high degrees of correlation in their expression profiles. As the result of this clus-
tering, the data may expose a more comprehensible structure, which provides meaningful infor-
mation for intuitive inspections.

Clustering gene expression data are especially challenging computational tasks. The
data set is used to present complex characteristics like high dimensionality, low density, and high
levels of noise and redundancy, thus preventing traditional computational tools, such as single-
linkage hierarchical clustering, from giving satisfactory performance. This fact has motivated
the application of several distinct and advanced techniques to the problem, including bio-inspired
algorithms. Given that each technique presents its own peculiarities and manipulates the avail-
able data set by means of distinct methodologies, it is not possible to determine a priori the best
choice among these possibilities.

This problem has led to an increasing interaction of people from biological and compu-
tational areas. On the one hand, computer scientists and engineers must provide efficient and
generic techniques, capable of extracting the most relevant properties of the data set. Further-
more, it is very important that the software tools present a user-friendly interface, supplying
intuitive output displays for biologists. On the other hand, biologists have to make it clear which
specific properties of the data they are interested in, so that clustering analyses can be better
planned and clustering tools can be designed for specific purposes.

We present an advanced clustering tool, named HaiNet (hierarchical artificial immune
network) (Bezerra et al., 2004), specifically designed to deal with gene expression data. HaiNet
is a powerful algorithm that uses ideas taken from the mammals’ immune system, such as a
population with a varying size, self-organizing interactions, and affinity maturation. The process
somewhat resembles that of antibodies, recognizing invading antigens, with the antigens being
associated with the original data set. A network of interconnected antibodies will be obtained
with no specific neighborhood until the end of the self-organizing process. After that, a func-
tional neighborhood is built by a minimal spanning tree. Each branch of the network is analyzed
and those considered inconsistent are removed, leading to an automatic determination of the
number of clusters. Additionally, HaiNet determines a hierarchical relation between clusters,
which can be represented as a dendrogram. Larger clusters are initially detected using a small
number of antibodies. By increasing the number of antibodies in the network, the representation
becomes more and more specific, and refined clusters are then recursively determined.

We believe that the particular properties of HaiNet are especially suitable for gene
expression data clustering. In most clustering techniques, the number of clusters is asked as
input data. This is generally a serious drawback because no a priori information is available
about the data structure, and consequently the user will arbitrarily set this value. HaiNet avoids
this problem by performing an automatic determination of the number of clusters. In addition,
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the hierarchical relation among clusters produced by the tool may favor the exploration of dif-
ferent degrees of correlation between genes. The specialist can choose which level of detail is
more adequate for a given purpose and in a given application.

As an advanced clustering technique devoted to deal with bioinformatics problems,
HaiNet is the result of a series of successful applications of immune-inspired algorithms. The
first attempt involved solely the artificial immune network (aiNet), with no hierarchical resources
(Bezerra and de Castro, 2003). Subsequently, the HaiNet was proposed (Bezerra et al., 2004)
and validated by means of an already exhaustively investigated gene expression data set. Here
we consider HaiNet as part of a broad research project, with newly generated data sets to be
analyzed for the first time, and with alternative clustering approaches to be explored either in a
competitive or a collaborative way.

As a case study, a data set was generated based on two strains of maize when exposed
to different concentrations of aluminum ions. One strain is tolerant to aluminum, and the other is
not. The ultimate purpose of this data analysis is to identify the genes responsible for the toler-
ance. So, the availability of a flexible and hierarchical clustering device will be an important
stage in a complete genomic project. To better assess the performance of HaiNet, we com-
pared the results obtained with those produced by a self-organizing map (SOM) (Kohonen,
1990). More specifically, we adopted as a testbed the approach proposed by Tamayo et al.
(1999).

HaiNet

HaiNet is an extension of a clustering technique, called aiNet (de Castro and Von
Zuben, 2000, 2001). The kernel of the learning algorithm is the same; however, HaiNet incorpo-
rates a hierarchical procedure that increases its potential.

aiNet clustering

The aiNet is a clustering technique well known in the artificial immune system commu-
nity (de Castro and Von Zuben, 2000, 2001). It combines a preprocessing learning procedure,
performed by an immune-based strategy, and a clustering partition step, which is achieved by
the use of a minimal spanning tree. The aiNet extracts the most relevant characteristics from
the input data by positioning its antibodies in the most representative portions of the data space,
thus filtering out noise and redundancy. After that, the minimal spanning tree is built on the
antibodies, and the edges of the tree are used as input to a clustering discrimination technique.

The aiNet learning procedure can be explained as follows. A random population of
antibodies is initially created. The whole population is then presented to the input patterns, which
are directly associated with antigens, and those antibodies that have a high affinity (low Euclid-
ean distance, for example) with the antigens are selected to be cloned. Each antibody is cloned
at a rate that is proportional to its affinity with the antigens, and the clones are then mutated at
a rate inversely proportional to their affinity value. The aim is to produce antibodies that better
recognize the antigens. This process, named clonal expansion, causes a growth in the population
of antibodies. It is inspired by one of the most important theories in immunology: the clonal
selection principle, originally proposed by Burnet (1959). After the expansion phase, those anti-
bodies presenting an affinity with each other that is higher than a fixed threshold are removed,
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thus eliminating the redundancy of the network. Again, this technique is inspired by immune
theories, particularly the immune network theory suggested by Niels Jerne (1974). The whole
process is then repeated, now with the remaining prototypes as the population of antibodies to
be exposed to the antigens. After some iterations, the affinity maturation process leads to the
convergence of the network. In our implementation of the aiNet learning algorithm, only the
best-matching antibody is selected to be cloned, and the cloning process produces only one
individual. The number of iterations used is 10. The computational cost of the aiNet is quadratic
with the size of the input instance.

When the learning step is finished, the minimal spanning tree is constructed on the
resulting antibodies, thus revealing the structure of the immune network. To extract the informa-
tion stored in the tree, we use a local criterion proposed by Zahn (1971), which identifies the
presence of clusters by evaluating the data distribution in the space. Each edge of the tree is
analyzed in relation to its neighbors, and those considered inconsistent, i.e., with a length much
greater than its immediate neighbors, are removed, leading to the data partition into clusters, also
denoted natural clusters (Everitt, 1993). As a consequence, this criterion tends to preserve the
inherent structure of the data set.

Hierarchy of networks

The aiNet can be extended to implement a hierarchical approach, which provides a
topological structure of the correlation between clusters. This extension is denoted hierarchical
aiNet, or simply HaiNet. Large clusters, representing more general differences within the data
points, are initially identified. They are then analyzed individually with more constrained param-
eters, leading to more refined clusters, i.e., clusters with a higher level of similarity among
components. This iterative process continues until no more natural clusters are identified.

To achieve this property, HaiNet makes use of a parameter called a suppression thresh-
old (σ

s
), which controls the level of refinement of the search. The suppression threshold is a

value that determines the maximum similarity that two antibodies may have so that one does not
recognize the other. It actuates in the network interaction phase of the aiNet learning proce-
dure. Beyond this value, two antibodies are considered to recognize each other, and one of them
must be suppressed to reduce the network redundancy. If σ

s
 is very high, the prototypes will

represent the data set with a high degree of generality, and the number of antibodies in the
network will be very small. As a result, the clustering device looks at the data set with gross
eyes, and only large-scale divisions can be detected. When σ

s
 is low, antibodies are able to get

closer to each other, leading to a more accurate representation of the data, with a larger number
of prototypes. Under these circumstances, the minimal spanning tree can detect the presence of
smaller divisions, revealing refined clusters with a higher density and specificity.

The hierarchical procedure consists in recursively running the aiNet, starting with a
high suppression threshold. This parameter is then slowly reduced, and the aiNet is run again for
each new value. Each value of σ

s
 corresponds to a novel hierarchical level. The algorithm can

be summarized as follows:

1. Parameter definition: define the initial value for the suppression threshold  σ
s
.

2. aiNet learning: run the aiNet learning algorithm with the given σ
s
.

3. Tree branching: each cluster detected by the minimal spanning tree, derived from the
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obtained network of antibodies, generates an offspring network in the next level of
the tree, i.e., a new branch of the tree. The clusters already detected will indicate the
portion of the data set to be attributed to each newly generated branch.

4. Parameters’ updating: reduce σ
s
, e.g., by geometrically decreasing them by a factor

α.
5. Offspring network evaluation: run each offspring network with the corresponding

attributed portion of the data set.
6. Tree convergence: if the offspring network does not detect a novel cluster, the pro-

cess is halted for that branch of the tree, and the tree expansion is completed at that
branch. Each branch of the tree represents a cluster and a sequence of branches
represents the hierarchy inherent to the data mapped into their corresponding clus-
ters. Otherwise, while a given offspring network (branch) of the tree is still capable
of identifying more than one cluster, return to Step 4 and the process continues until
no new cluster can be identified in any active branch.

In step 6, the process is halted every time the suppression threshold is low enough so
that each antibody of the network represents exactly one point of the data set.

MAIZE DATA

The data set consists of the expression levels of 187 genes of two strains of maize,
Cat100-6 (Al-tolerant) and S1787-17 (Al-sensitive). The plants were exposed to different alu-
minum concentrations (Al ions), in a total of three experimental conditions: control (zero Al),
75Al (75 µM Al) and 283Al (283 µM Al). As both strains were put in the same matrix, the data
set to be clustered assumes the form of a 187 × 6 matrix, in which the first three experiments
correspond to Cat100-6 and the other three to S1787-17. Also, each gene was normalized by the
mean of its attributes, thus all genes are in the same scale, and the shape of the expression
profile becomes more important than the intensity of the values.

Aluminum is the most abundant metal on the earth surface, and most plants are sensi-
tive to it. The toxic effect of aluminum inhibits plant growth, making most kinds of cultivations in
soils with high concentrations of this metal impracticable. The main objective of the gene ex-
pression analysis is to find the genes involved in the tolerance of Cat100-6. This clustering
strategy may elucidate mechanisms involved in the tolerance and in the toxicity of aluminum.
This is a project carried out by the LGF (Laboratory of Functional Genome - http://
cafe.cbmeg.unicamp.br).

COMPUTATIONAL ANALYSIS AND RESULTS

The self-organizing map

The implementation of the SOM proposed by Tamayo et al. (1999) needs the number of
clusters as an input parameter. This is determined by the size of the bi-dimensional grid. Biolo-
gists made the choice of the grid size. By visual inspection they selected the grid that yields the
most interesting patterns, and at the same time, a relative low deviation. The chosen grid was
5 × 6, i.e., 30 clusters (Figure 1).
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Figure 1. Self-organizing map output clusters, with the number of genes in each one. Letters A to F in cluster C0 indicate
the experimental conditions.

The hierarchical aiNet (HaiNet)

The results produced by the HaiNet were considerably different from those of SOM.
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The minimal spanning tree cutting criterion was capable of automatically detecting 40 clusters,
and the content of the clusters are not necessarily consistent with the 30 clusters associated
with the SOM strategy. The hierarchical tree that was obtained had six levels (Figure 2). Notice
that there are some clusters with attached numbers. These numbers represent SOM clusters
that are included into the corresponding HaiNet clusters.

A SOM cluster was considered to be inside of a HaiNet cluster if at least 80% of its
genes were included. Only five clusters, C3, C7, C18, C25, and C29, were preserved by HaiNet.
In the other cases, HaiNet found inherent subdivisions, most of them already in the initial hierar-
chical levels of the tree. This is an indication that some of the SOM clusters are not too stable,
at least for this configuration. On the other hand, HaiNet found an interesting result concerning
topology preservation of the maps. Note that there was no grouping in a same tree node of
SOM clusters that were not connected by neighborhood links in the grid. This can be observed
in clusters A and B. If, for example, cluster C25 were grouped within node A, this would char-
acterize a topology violation of SOM, because the neuron corresponding to cluster C25 has no
neighboring link with any SOM cluster inside A.

Furthermore, some clusters found by HaiNet, which present visible strong characteris-
tic profiles, like G and H, are almost identical to the SOM clusters C29 and C25, respectively, as
would be expected. Figure 3 shows these clusters side by side.

As these clusters were more specific in relation to the rest of the data set, they were
already identified at the first level of the hierarchy, i.e., they were positioned quite far from the
rest of the data set, so that the distance separating them from the other genes was perceivable,
using a high value for σ

s
.

Determining the number of clusters

The a priori definition of the number of clusters is a very risky practice. An incorrect
estimate may distort the natural configuration of clusters. In our analysis, whenever SOM was
designated to find only 30 clusters, natural clusters could be dissociated and put into two or more
clusters in order to fit the restriction. A good example can be seen with clusters C5 and C28.
They contain genes that visibly escape from the overall pattern (Figure 4). These genes to-
gether form a novel pattern, which was not identified by the SOM. However, HaiNet was
capable of extracting this new profile, by removing the discrepant genes from both clusters, and
better accommodating them into a novel cluster.

Note that two genes of C5 and one gene of C28 were put together in cluster DC. Also,
the remaining genes of C28 were divided into clusters DA and DB, together with other similar
genes of the data set. The remaining samples in C5 were also partitioned, but this takes place in
another branch of the tree.

The results provided by HaiNet were found to be significantly better than those with
SOM. The reason is that more refined clusters reduce the tedious work of biologists in filtering
every cluster by visually detecting the genes that escape from the most representative patterns.
However, it is fairly valid to say that SOM could have been used with a larger bi-dimensional
grid. But, the number of clusters found would still not be automatic. Moreover, one can take
advantage of the hierarchical relation produced by HaiNet, by traversing the correlation levels.
A higher level, for example, is similar to an SOM executed using a smaller grid, but still with the
same benefit of an automatically defined number of clusters.
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Figure 2. Hierarchical tree with six levels obtained by HaiNet. Numbers next to nodes indicate the self-organizing map
clusters that are included.
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Exploring the hierarchical topology

In the hierarchical procedure explained in the “Hierarchy of networks” section, large-
scale divisions are first detected, followed by more and more refined evaluations. In order to
illustrate this property, Figure 5 gives prominence to one branch of the tree, concerning the
expansion of cluster B. The intention is to demonstrate the fine-tuning process by detailing two
descending hierarchical levels. A similar treatment could be adopted for the remaining branches
of the tree.

Notice that cluster B presents a very noisy pattern. However, its genes are consider-
ably distinct from the rest of the data set for this level of the hierarchy, being grouped to form an
isolated cluster. As we descend to the second level of the branch, the most visible patterns
within B are extracted, leading to clusters BA, BB and BC. Nevertheless, BA is still not good
enough. By fine-tuning the HaiNet parameters, subdivisions in cluster BA are found, and the
more refined clusters, BAA, BAB and BAC are thus identified.

Figure 3. Clusters with the most evident characteristic patterns were identified by both techniques.

Figure 4. HaiNet put the discrepant genes in clusters C5 and C28 into a novel cluster, DC.
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Figure 5. Detailed branch of the hierarchical tree concerning the expansion of cluster B.

CONCLUSION

We have presented a flexible and hierarchical clustering device for gene expression
data analysis. HaiNet possesses desirable properties, including an automatic definition of the
number of clusters and a hierarchical topology. Comparing HaiNet results with those produced
with SOM, more consistent and informative outputs can be obtained with the former. This is a
relevant aspect in the context of gene expression data analysis, mainly because the SOM ap-
proach is a well-disseminated clustering device for biologists.

As a demonstration of the practical applicability of HaiNet, we applied the algorithm to
a data set concerning maize plants exposed to different aluminum ion concentrations. The re-
sults obtained will be further explored by biologists toward better understanding the genetic
tolerance mechanisms of plants to aluminum.
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