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ABSTRACT. Mercury is present in the environment as a result of
natural processes and from anthropogenic sources. The amount of mercury
mobilized and released into the biosphere has increased since the
beginning of the industrial age. Generally, mercury accumulates
upwards through aquatic food chains, so that organisms at higher trophic
levels have higher mercury concentrations. Some bacteria are able to
resist heavy metal contamination through chemical transformation by
reduction, oxidation, methylation and demethylation. One of the best
understood biological systems for detoxifying organometallic or
inorganic compounds involves the mer operon. The mer determinants,
RTPCDAB, in these bacteria are often located in plasmids or transposons
and can also be found in chromosomes. There are two classes of
mercury resistance: narrow-spectrum specifies resistance to inorganic
mercury, while broad-spectrum includes resistance to organomercurials,
encoded by the gene merB. The regulatory gene merR is transcribed
from a promoter that is divergently oriented from the promoter for the
other mer genes. MerR regulates the expression of the structural genes
of the operon in both a positive and a negative fashion. Resistance is
due to Hg>" being taken up into the cell and delivered to the NADPH-
dependent flavoenzyme mercuric reductase, which catalyzes the
two-electron reduction of Hg*" to volatile, low-toxicity Hg?. The
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potential for bioremediation applications of the microbial mer operon
has been long recognized; consequently, Escherichia coli and other wild
and genetically engineered organisms for the bioremediation of Hg*'-
contaminated environments have been assayed by several laboratories.
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INTRODUCTION

Mercury, the 6th most toxic in a universe of 6 million substances, exists naturally in
small amounts in the environment, being the 16th most rare element on Earth. However, its
levels have risen due to environmental contamination from human activities, such as burning
coal and petroleum products, use of mercurial fungicides in paper making and agriculture and
mercury catalysts in industry, with a consequent release of mercury into the air and water and
on the land. These activities can increase local mercury levels several thousand-fold above
background (Tuovinen, 1984). In Brazil, huge amounts of mercury are used at prospecting sites
for amalgam formation in gold extraction. An average of 1.32 kg of mercury is used for each
kilogram of gold produced (Lacerda and Solomons, 1991). As a consequence, metallic mercury
is introduced into the environment, representing one of the major sources of aggression against
man and the environment. Its use in seed and bulb dressings directed against bacteria and fungi
on fruit trees has introduced much of the mercury that contaminates agricultural land. Therefore,
environmental pollution is an increasing problem both for developing and developed countries.

Minamata disease, discovered in 1956 around Minamata Bay, Japan, is the first
instance on record of severe methylmercury poisoning, having affected thousands of people,
887 of whom were killed (Daher, 1999). It resulted from the consumption, mainly by fishermen
and their families, of large amounts of fish and shellfish contaminated with methylmercury,
resulting from the transformation of the HgCl, discharged from a chemical plant (Chisso Co.
Ltd.). Methylmercury is a neurological poison primarily affecting the central nervous system,
liver and kidney. When ingested, almost all of the methylmercury is absorbed. Its half-life is
about 44 days. Most methylmercury is converted and excreted into the feces and urine (Abelsohn
etal., 2002). The other chemical forms of mercury, vapor and inorganic mercury, accumulate in
the brain (Hg) and kidney (Hg*"). The kidney is the main target organ for inorganic mercury.
The typical symptoms of Minamata disease include neurological disorders, such as sensory
disorders, cerebellar ataxia, constriction of the visual field, auditory disturbances, tremoring of
the visual field, and disequilibrium (Langford and Ferner, 1999). Furthermore, many of the
affected individuals in Minamata were congenitally affected by methylmercury. Their mothers
had only mild or no manifestation of poisoning (Harada, 1978). This fact demonstrates the
much higher vulnerability of fetuses than adults and shows that methylmercury easily passes
through the placenta and affects the fetus (Nishigaki and Harada, 1975).

MERCURY CYCLE IN THE ENVIRONMENT

The environmental mercury cycle is mediated by both geological and biological
processes. Mercury vapor (metallic mercury) emitted from both natural and anthropogenic
sources is globally distributed in the atmosphere. The major form of mercury in the atmosphere
is vapor mercury (Hg®), which is volatile and is oxidized to mercuric ion (Hg*") as a result of its
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interaction with ozone in the presence of water (Munthe and McElroy, 1992; DeMagalhaes and
Tubino, 1995; Pleijel and Munthe, 1995). Most of the mercury entering aquatic environments
is Hg*". Inorganic mercury, present in water and sediments, is subject to bacterial conversion to
methylmercury compounds that are bioaccumulated in the aquatic food chain. Organomercury
compounds are translocated rapidly through the food chain, with tragic consequences. Predatory
organisms at the top of the food chain generally have higher mercury concentrations, found as
organic forms of methylmercury.

The major chemical forms of mercury to which humans are exposed are mercury vapor,
Hg®, and methylmercury compounds, which are highly toxic to all living organisms. The toxicity
of inorganic and organic mercury compounds is due to their strong affinity for sulfur-containing
organic compounds, such as enzymes and other proteins. For this reason these compounds are
extremely toxic to biological systems. However, bacteria, fungi and plants have evolved mechanisms
of resistance to several of these different chemical forms. The bacteria play a major role in the
global cycling of mercury in the natural environment. Bacterial resistance to mercury and their
role in mercury cycling have been extensively studied (Osborn et al., 1997). This mini-review
focuses predominantly on mercury resistance mer operons.

BIOCHEMICAL BASIS OF BACTERIAL MERCURY RESISTANCE

As a response to toxic mercury compounds globally distributed by geological and
anthropogenic activities, microorganisms have developed a surprising array of resistance
systems to overcome the poisonous environment. An extensively studied resistance system,
based on clustered genes in an operon (mer operon), allows bacteria to detoxify Hg?" into
volatile metallic mercury by enzymatic reduction (Komura and Izaki, 1971; Summers, 1986;
Misra, 1992; Silver, 1996; Osborn et al., 1997). Mercury-resistance determinants have been
found in a wide range of Gram-negative and Gram-positive bacteria isolated from different
environments. They vary in the number and identity of genes involved and are encoded by mer
operons, usually located on plasmids (Summers and Silver, 1972; Brown et al., 1986; Griffin et
al., 1987; Radstrom et al., 1994) and chromosomes (Wang et al., 1987; Inoue et al., 1991); they
are often components of transposons (Misra et al., 1984; Kholodii et al., 1993) and integrons
(Liebert et al., 1999).

Two main mer determinant types have been described: narrow-spectrum mer determinants
confer resistance to inorganic mercury salts only, whereas broad-spectrum mer determinants
confer resistance to organomercurials such as methylmercury and phenylmercury, as well as to
inorganic mercury salts (Misra, 1992; Silver and Phung, 1996; Bogdanova et al., 1998).

The biochemical basis of resistance to inorganic mercury compounds such as HgCl,
appears to be quite similar in several different species. It involves the reduction of Hg*" to
volatile Hg® by an inducible enzyme, mercuric reductase. This enzyme has been characterized
in plasmid-carrying strains of Pseudomonas, Escherichia coli and Staphylococcus aureus
(Summers and Silver, 1978; Bhriain and Foster, 1996; Silver and Phung, 1996; Osborn et al.,
1997). This reductase is a flavoprotein, which catalyzes the NADPH-dependent reduction of
Hg* to Hg". Since mercury has such a high vapor pressure, it volatilizes and the bacterial
environment is left mercury free. This mercuric reductase is found intracellularly and is inducible
by subinhibitory concentrations of mercuric ions and a variety of organomercurial substances
(Furukawa and Tonomura, 1972; Summers, 1972; Schottel, 1978).
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Based on a comparison with other bacterial periplasmic binding, protein-dependent
transport systems, it has been proposed that Hg*" diffuses across the outer membrane (Brown,
1985). Mercuric ions are transported outside the cell by a series of transporter proteins. This
mechanism involves the binding of Hg*" by a pair of cysteine residues on the MerP protein
located in the periplasm. Hg?" is then transferred to a pair of cysteine residues on MerT, a
cytoplasmic membrane protein, and finally to a cysteine pair at the active site of MerA (mercuric
reductase) (Hamlett et al., 1992). Next, Hg*" is reduced to Hg” in an NADPH-dependent reaction.
The non-toxic Hg"is then released into the cytoplasm and volatilizes from the cell.

The biochemical mechanism for broad-spectrum resistance to organomercurials
involves, in addition to mercuric reductase, another inducible, soluble enzyme: organomercurial
lyase. This enzyme cleaves the organometallic linkage to yield Hg*", and then the reductase
uses NADPH to reduce the elemental mercury form, which volatilizes from the cell (Schottel, 1978).

STRUCTURE OF THE MER OPERON

The mer operons vary in structure and are constituted by genes that encode the functional
proteins for regulation (merR), transport (merT, merP and/or merC, merF) and reduction (merA)
(Figure 1). In some cases, known as broad-spectrum mercury resistance, additional merB genes
are required to confer resistance to many organomercurials, such as methylmercury and
phenylmercury, by hydrolyzing the C-Hg bond before Hg*" reduction. In general, the additional
merB genes are found downstream of the merA4 gene in the mer operon (Osborn et al., 1997).

Most mer operons contain a regulatory gene, mer R, which is transcribed separately
and divergently from the structural mer genes. However, in Gram-positive bacteria the merR
genes of pI258 from Staphylococcus aureus and RC 607 from Bacillus sp. are transcribed in the
same direction as the structural genes (Laddaga et al., 1987; Wang et al., 1989). MerR, the
metalloregulatory protein, binds the promoter-operator region, where it both positively and
negatively regulates the expression of the divergently transcribed structural genes, and also
negatively regulates its own expression. MerR protein activates transcription of the operon in
the presence of inducing concentrations of Hg?'. It represses transcription of the structural
genes from the mer operon (merTPCFAD) in the absence of Hg?', and activates transcription in
the presence of Hg?'. The most distal promoter gene, merD, which is co-transcribed with the
structural genes, down-regulates the mer operon. MerD, a secondary regulatory protein, also
binds the same operator-promoter region as MerR, although very weakly (Nucifora et al., 1990;
Mukhopadhyay et al., 1991).

A number of structural genes are found downstream of the operator/promoter site; the
proteins they code for are involved in mercuric ion transport. All the mer operons have merT
and merP, however, some operons, such as transposon Tn21, have merC (the first example
found with the merC gene). The additional merC gene is located between merP and merA.
However, it seems not to be essential for Hg*" resistance since it is absent from Tn501, which
confers identical Hg*" resistance levels (Bhriain and Foster, 1986; Summers, 1986). Both merT
and merP are required for full expression of Hg?' resistance, but loss of merP is less deleterious
than loss of merT. In contrast, mutating merC had no effect on Hg' resistance, though it de-
creased the level of expression. Recently, one more mer gene implicated in mercuric transport,
merF, was found in plasmid pMER327/419 of Pseudomonas fluorescens between merP and
merA (Wilson et al., 2000).
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Figure 1. Schematic representation of Gram-negative and Gram-positive mer operons, derived from DNA sequence data: transposon
Tn21 of the plasmid NR1 from Shigella flexneri; transposon Tn501 of the plasmid pVS1 from Pseudomonas aeruginosa; plasmid
pDU1358 from Serratia marcescens; transposon Tn5053 of the plasmid pMR from Xanthomonas sp.; plasmid pPB from
Pseudomonas stutzer, and plasmid pI258 from Staphylococcus aureus.

The merA gene, determining mercuric reductase, and merB, if present, encoding the
enzyme organomercurial lyase, are immediately followed by genes encoding transport function.
However, as observed in Pseudomonas stutzeri, the merB gene is found between merR and
merT, together with an extra operator-promoter region (Weiss et al., 1977; Walsh et al., 1988;
Reniero et al., 1995). The other genes encoding organomercury resistance have been identified
and designated merG and merE, located between mer4 and merB on the broad-spectrum mer
operon (Huang et al., 1999; Kiyono and Pan-Hou, 1999). Furthermore, merB seldom occurs in
Gram-negative bacteria (Laddaga et al., 1987; Wang et al., 1989; Sedlmeier and Altenbuchner,
1992; Bogdanova et al., 1998).
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Various mercury detoxification mechanisms, without mercury-reducing activity, have
been reported, such as reduced uptake of mercuric ions due to reduction in cellular permeability
to Hg*" ions (Pan-Hou et al., 1981), demethylation of methylmercury by Clostridium cochlearium
T-2P, which involves the decomposition and inactivation of inorganic mercury with hydrogen
sulfide (H,S) (Pan-Hou and Imura, 1981), mercury methylation by certain bacteria that use
methylation as a resistance/detoxification mechanism (Trevors, 1986) and sequestration of
methylmercury (Silver and Misra, 1984).

MERCURY AND ANTIBIOTIC RESISTANCE

Mercury pollution can contribute to increased antibiotic resistance (McArthur and
Tuckfield, 2000). The combined expression of antibiotic resistance and mercury may be caused
by selection, as a consequence of the mercury present in an environment (Sant’ana et al., 1989).
Mercury resistance operons, which are often found in conjugative plasmids and transposons,
provide a suitable model system for the study of horizontal gene transfer in natural populations
of bacteria. Bacterial plasmid resistance systems (mer gene) for mercurials and organomercurials
are the best understood of such systems at the biochemical and molecular genetic levels (Kalyaeva et
al., 1988; Silver, 1994).

BIOTECHNOLOGICAL APPLICATIONS OF MER GENES TO MERCURY
DECONTAMINATION AND RECOVERY

Industrial use of mercury led to pollution of the environment. Consequently, mercury
removal is a challenge for environmental management. Common processes to remove mercury
from contaminated sources, based on adsorption with ion-exchange resins or biosorbents, have
been found to be sensitive to environment conditions (Ritter and Bibbler, 1992; Chang and
Hong, 1994). Biological processes have been employed in bioremediation, including metal
recovery, and are potentially low cost. The use of bacteria for removing metal from contaminated
environments is a promising technology. However, passive adsorption and immobilization
treatments produce a large volume of mercury-loaded biomass, the disposal of which is
problematic. Microorganisms in contaminated environments have developed resistance to
mercury and are playing a major role in natural decontamination (Cursino et al., 1999).

The bacterial plasmid/transposon resistance systems for mercurials and organomercurials
(mer systems) are the best understood at the biochemical and molecular genetic levels (Silver,
1994), and are of great interest since they represent a natural strategy for the detoxification of
mercury-contaminated environments. The potential of the microbial mer operon, which
functions by active enzymatic reduction of mercury ions to water-insoluble metallic mercury,
has been recognized for a long time, because of its high levels of efficacy and specificity. Inside
the cell, Hg*" is reduced to metallic mercury (Hg?), which passively diffuses out of the cell and
its environment (with no energy expenditure) (Saouter et al., 1994; Silver, 1996; Silver and
Phung, 1996; von Canstein et al., 1999; Chen et al., 1999; Nies, 1999). Therefore, the bacterial
biomass acts continuously as a catalyst, without the accumulation of large volumes of biomass.
However, currently there are no records of the use of the mer operon for the treatment of industrial
waste or of other environments contaminated with mercury (von Canstein et al., 1999).

Some experiments have been conducted in the form of a microcosmos (a glass apparatus
with different chambers) used to perform environmental simulations (river, lake, etc.). In a
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central chamber the contaminated medium is treated with mercury-reducing bacteria. The
concentration and form of mercury can be monitored in the different chambers. Mercury
reduction from Hg*" to Hg can reach a 95% rate when the Hg*" in the first chamber (entry) is
compared to that in the last one (exit), demonstrating the high biotechnological potential of
mercury reduction by the mer operon (Saouter et al., 1994).

Other studies, some of them conducted in our laboratory, have described mercury-
reducing bacterial strains, with emphasis on Escherichia coli, obtained and genetically
improved by means of mer operon cloning and by other recombinant DNA techniques (Hou et
al., 1988; Nascimento et al., 1992a,b; Chen and Wilson, 1997; Cursino et al., 2000). MerA has
been found to be active in yeast (Rensing et al., 1992) and plants (Rugh et al., 1996, 1998).

Techniques to detect mercurial compounds in the environment using mechanical analysis
procedures, such as atomic spectrophotometry (Omang, 1971) or cold-vapor atomic fluorescence
detection (Bloom and Fitzgerald, 1988), have been developed. However, the preparation of
samples is very laborious. An alternative will be the use of bacterial sensors. Bioassays can
complement analytical chemical methods for the detection of biologically available mercury in
environmental samples. Bacterial biosensors have been engineered to contain a report plasmid
that carries gene fusions between the regulatory region of the mer operon (merR) and bacterial
luminescence genes (/ux-CDABE) that quantitatively respond to Hg*" (Selifonova et al., 1993;
Ramanathan et al., 1997; Rasmussena et al., 2000).
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